1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Cyclic Path Redundancy pass. Removes redundant vertices on paths
* leading to a cyclic repeat.
*
* This is a graph reduction pass intended to remove vertices that are
* redundant because they lead solely to a cyclic vertex with a superset of
* their character reachability. For example, in this pattern:
*
* /(abc|def|abcghi).*0123/s
*
* The vertices for 'ghi' can be removed due to the presence of the dot-star
* repeat.
*
* Algorithm:
*
* for each cyclic vertex V:
* for each proper predecessor U of V:
* let S be the set of successors of U that are successors of V
* (including V itself)
* for each successor W of U not in S:
* perform a DFS forward from W, stopping exploration when a vertex
* in S is encountered;
* if a vertex with reach not in reach(V) or an accept is encountered:
* fail and continue to the next W.
* else:
* remove (U, W)
*
* NOTE: the following code is templated not just for fun, but so that we can
* run this analysis both forward and in reverse over the graph.
*/
#include "ng_cyclic_redundancy.h"
#include "ng_holder.h"
#include "ng_prune.h"
#include "ng_util.h"
#include "util/container.h"
#include "util/flat_containers.h"
#include "util/graph_range.h"
#include "util/graph_small_color_map.h"
#include <algorithm>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/reverse_graph.hpp>
using namespace std;
using boost::reverse_graph;
namespace ue2 {
namespace {
// Terminator function for depth first traversal, tells us not to explore
// beyond vertices in set S.
template<class Vertex, class Graph>
class VertexInSet {
public:
explicit VertexInSet(const flat_set<Vertex> &s) : verts(s) {}
bool operator()(const Vertex &v, const Graph&) const {
return contains(verts, v);
}
private:
const flat_set<Vertex> &verts;
};
struct SearchFailed {};
// Visitor for depth first traversal, throws an error if we encounter a vertex
// with bad reach or a report.
class SearchVisitor : public boost::default_dfs_visitor {
public:
explicit SearchVisitor(const CharReach &r) : cr(r) {}
template<class Vertex, class Graph>
void discover_vertex(const Vertex &v, const Graph &g) const {
DEBUG_PRINTF("vertex %zu\n", g[v].index);
if (is_special(v, g)) {
DEBUG_PRINTF("start or accept\n");
throw SearchFailed();
}
if (g[v].assert_flags) {
DEBUG_PRINTF("assert flags\n");
throw SearchFailed();
}
const CharReach &vcr = g[v].char_reach;
if (vcr != (vcr & cr)) {
DEBUG_PRINTF("bad reach\n");
throw SearchFailed();
}
}
private:
const CharReach &cr;
};
} // namespace
template<class Graph, class ColorMap>
static
bool searchForward(const Graph &g, const CharReach &reach,
ColorMap &colours,
const flat_set<typename Graph::vertex_descriptor> &s,
typename Graph::vertex_descriptor w) {
colours.fill(small_color::white);
try {
depth_first_visit(g, w, SearchVisitor(reach), colours,
VertexInSet<typename Graph::vertex_descriptor, Graph>(s));
} catch (SearchFailed &) {
return false;
}
return true;
}
static
NFAEdge to_raw(const NFAEdge &e, const NGHolder &) {
return e;
}
static
NFAEdge to_raw(const reverse_graph<NGHolder, NGHolder &>::edge_descriptor &e,
const reverse_graph<NGHolder, NGHolder &> &g) {
return get(boost::edge_underlying, g, e);
}
/* returns true if we did stuff */
template<class Graph>
static
bool removeCyclicPathRedundancy(Graph &g, typename Graph::vertex_descriptor v,
NGHolder &raw) {
bool did_stuff = false;
const CharReach &reach = g[v].char_reach;
typedef typename Graph::vertex_descriptor vertex_descriptor;
// Colour map used for depth_first_visit().
auto colours = make_small_color_map(g);
// precalc successors of v.
flat_set<vertex_descriptor> succ_v;
insert(&succ_v, adjacent_vertices(v, g));
flat_set<vertex_descriptor> s;
for (const auto &e : in_edges_range(v, g)) {
vertex_descriptor u = source(e, g);
if (u == v) {
continue;
}
if (is_any_accept(u, g)) {
continue;
}
DEBUG_PRINTF("- checking u %zu\n", g[u].index);
// let s be intersection(succ(u), succ(v))
s.clear();
for (auto b : adjacent_vertices_range(u, g)) {
if (contains(succ_v, b)) {
s.insert(b);
}
}
for (const auto &e_u : make_vector_from(out_edges(u, g))) {
vertex_descriptor w = target(e_u, g);
if (is_special(w, g) || contains(s, w)) {
continue;
}
const CharReach &w_reach = g[w].char_reach;
if (!w_reach.isSubsetOf(reach)) {
continue;
}
DEBUG_PRINTF(" - checking w %zu\n", g[w].index);
if (!searchForward(g, reach, colours, succ_v, w)) {
continue;
}
DEBUG_PRINTF("removing edge (%zu,%zu)\n", g[u].index, g[w].index);
/* we are currently iterating over the in-edges of v, so it
would be unwise to remove edges to v. However, */
assert(w != v); /* as v is in s */
remove_edge(to_raw(e_u, g), raw);
did_stuff = true;
}
}
return did_stuff;
}
template<class Graph>
static
bool cyclicPathRedundancyPass(Graph &g, NGHolder &raw) {
bool did_stuff = false;
for (auto v : vertices_range(g)) {
if (is_special(v, g) || !edge(v, v, g).second) {
continue;
}
DEBUG_PRINTF("examining cyclic vertex %zu\n", g[v].index);
did_stuff |= removeCyclicPathRedundancy(g, v, raw);
}
return did_stuff;
}
bool removeCyclicPathRedundancy(NGHolder &g) {
assert(hasCorrectlyNumberedVertices(g));
// Forward pass.
bool f_changed = cyclicPathRedundancyPass(g, g);
if (f_changed) {
DEBUG_PRINTF("edges removed by forward pass\n");
pruneUseless(g);
}
// Reverse pass.
DEBUG_PRINTF("REVERSE PASS\n");
typedef reverse_graph<NGHolder, NGHolder &> RevGraph;
RevGraph revg(g);
bool r_changed = cyclicPathRedundancyPass(revg, g);
if (r_changed) {
DEBUG_PRINTF("edges removed by reverse pass\n");
pruneUseless(g);
}
return f_changed || r_changed;
}
} // namespace ue2
|