1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
/*
* Copyright (c) 2015-2018, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Splits an NFA graph into its connected components.
*
* This pass takes a NGHolder and splits its graph into a set of connected
* components, returning them as individual NGHolder graphs. For example, the
* graph for the regex /foo.*bar|[a-z]{7,13}|hatstand|teakettle$/ will be split
* into four NGHolders, representing these four components:
*
* - /foo.*bar/
* - /[a-z]{7,13}/
* - /hatstand/
* - /teakettle$/
*
* The pass operates by creating an undirected graph from the input graph, and
* then using the BGL's connected_components algorithm to do the work, cloning
* the identified components into their own graphs. A "shell" of vertices
* is identified and removed first from the head and tail of the graph, in
* order to handle cases where there is a common head/tail region.
*
* Trivial cases, such as an alternation of single vertices like /a|b|c|d|e|f/,
* are not split, as later optimisations will handle these cases efficiently.
*/
#include "ng_calc_components.h"
#include "ng_depth.h"
#include "ng_holder.h"
#include "ng_prune.h"
#include "ng_util.h"
#include "grey.h"
#include "ue2common.h"
#include "util/graph_range.h"
#include "util/graph_undirected.h"
#include "util/make_unique.h"
#include <map>
#include <vector>
#include <boost/graph/connected_components.hpp>
#include <boost/graph/filtered_graph.hpp>
using namespace std;
namespace ue2 {
static constexpr u32 MAX_HEAD_SHELL_DEPTH = 3;
static constexpr u32 MAX_TAIL_SHELL_DEPTH = 3;
/**
* \brief Returns true if the whole graph is just an alternation of character
* classes.
*/
bool isAlternationOfClasses(const NGHolder &g) {
for (auto v : vertices_range(g)) {
if (is_special(v, g)) {
continue;
}
// Vertex must have in edges from starts only.
for (auto u : inv_adjacent_vertices_range(v, g)) {
if (!is_any_start(u, g)) {
return false;
}
}
// Vertex must have out edges to accepts only.
for (auto w : adjacent_vertices_range(v, g)) {
if (!is_any_accept(w, g)) {
return false;
}
}
}
DEBUG_PRINTF("alternation of single states, treating as one comp\n");
return true;
}
/**
* \brief Compute initial max distance to v from start (i.e. ignoring its own
* self-loop).
*/
static
depth max_dist_from_start(const NGHolder &g,
const vector<NFAVertexBidiDepth> &depths,
NFAVertex v) {
depth max_depth(0);
for (const auto u : inv_adjacent_vertices_range(v, g)) {
if (u == v) {
continue;
}
const auto &d = depths.at(g[u].index);
if (d.fromStart.max.is_reachable()) {
max_depth = max(max_depth, d.fromStart.max);
}
if (d.fromStartDotStar.max.is_reachable()) {
max_depth = max(max_depth, d.fromStartDotStar.max);
}
}
return max_depth + 1;
}
/**
* \brief Compute initial max depth from v from accept (i.e. ignoring its own
* self-loop).
*/
static
depth max_dist_to_accept(const NGHolder &g,
const vector<NFAVertexBidiDepth> &depths,
NFAVertex v) {
depth max_depth(0);
for (const auto w : adjacent_vertices_range(v, g)) {
if (w == v) {
continue;
}
const auto &d = depths.at(g[w].index);
if (d.toAccept.max.is_reachable()) {
max_depth = max(max_depth, d.toAccept.max);
}
if (d.toAcceptEod.max.is_reachable()) {
max_depth = max(max_depth, d.toAcceptEod.max);
}
}
return max_depth + 1;
}
static
flat_set<NFAVertex> findHeadShell(const NGHolder &g,
const vector<NFAVertexBidiDepth> &depths,
const depth &max_dist) {
flat_set<NFAVertex> shell;
for (auto v : vertices_range(g)) {
if (is_special(v, g)) {
continue;
}
if (max_dist_from_start(g, depths, v) <= max_dist) {
shell.insert(v);
}
}
for (UNUSED auto v : shell) {
DEBUG_PRINTF("shell: %zu\n", g[v].index);
}
return shell;
}
static
flat_set<NFAVertex> findTailShell(const NGHolder &g,
const vector<NFAVertexBidiDepth> &depths,
const depth &max_dist) {
flat_set<NFAVertex> shell;
for (auto v : vertices_range(g)) {
if (is_special(v, g)) {
continue;
}
if (max_dist_to_accept(g, depths, v) <= max_dist) {
shell.insert(v);
}
}
for (UNUSED auto v : shell) {
DEBUG_PRINTF("shell: %zu\n", g[v].index);
}
return shell;
}
static
vector<NFAEdge> findShellEdges(const NGHolder &g,
const flat_set<NFAVertex> &head_shell,
const flat_set<NFAVertex> &tail_shell) {
vector<NFAEdge> shell_edges;
for (const auto &e : edges_range(g)) {
auto u = source(e, g);
auto v = target(e, g);
if (v == g.startDs && is_any_start(u, g)) {
continue;
}
if (u == g.accept && v == g.acceptEod) {
continue;
}
if ((is_special(u, g) || contains(head_shell, u)) &&
(is_special(v, g) || contains(tail_shell, v))) {
DEBUG_PRINTF("edge (%zu,%zu) is a shell edge\n", g[u].index,
g[v].index);
shell_edges.push_back(e);
}
}
return shell_edges;
}
template<typename GetAdjRange>
bool shellHasOnePath(const NGHolder &g, const flat_set<NFAVertex> &shell,
GetAdjRange adj_range_func) {
if (shell.empty()) {
DEBUG_PRINTF("no shell\n");
return false;
}
NFAVertex exit_vertex = NGHolder::null_vertex();
for (auto u : shell) {
for (auto v : adj_range_func(u, g)) {
if (contains(shell, v)) {
continue;
}
if (!exit_vertex) {
exit_vertex = v;
continue;
}
if (exit_vertex == v) {
continue;
}
return false;
}
}
return true;
}
/**
* True if all edges out of vertices in the head shell lead to at most a single
* outside vertex, or the inverse for the tail shell.
*/
static
bool shellHasOnePath(const NGHolder &g, const flat_set<NFAVertex> &head_shell,
const flat_set<NFAVertex> &tail_shell) {
if (shellHasOnePath(g, head_shell, adjacent_vertices_range<NGHolder>)) {
DEBUG_PRINTF("head shell has only one path through it\n");
return true;
}
if (shellHasOnePath(g, tail_shell, inv_adjacent_vertices_range<NGHolder>)) {
DEBUG_PRINTF("tail shell has only one path into it\n");
return true;
}
return false;
}
/**
* Common code called by calc- and recalc- below. Splits the given holder into
* one or more connected components, adding them to the comps deque.
*/
static
void splitIntoComponents(unique_ptr<NGHolder> g,
deque<unique_ptr<NGHolder>> &comps,
const depth &max_head_depth,
const depth &max_tail_depth, bool *shell_comp) {
DEBUG_PRINTF("graph has %zu vertices\n", num_vertices(*g));
assert(shell_comp);
*shell_comp = false;
// Compute "shell" head and tail subgraphs.
auto depths = calcBidiDepths(*g);
auto head_shell = findHeadShell(*g, depths, max_head_depth);
auto tail_shell = findTailShell(*g, depths, max_tail_depth);
for (auto v : head_shell) {
tail_shell.erase(v);
}
if (head_shell.size() + tail_shell.size() + N_SPECIALS >=
num_vertices(*g)) {
DEBUG_PRINTF("all in shell component\n");
comps.push_back(std::move(g));
*shell_comp = true;
return;
}
// Find edges connecting the head and tail shells directly.
vector<NFAEdge> shell_edges = findShellEdges(*g, head_shell, tail_shell);
DEBUG_PRINTF("%zu vertices in head, %zu in tail, %zu shell edges\n",
head_shell.size(), tail_shell.size(), shell_edges.size());
// If there are no shell edges and only one path out of the head shell or
// into the tail shell, we aren't going to find more than one component.
if (shell_edges.empty() && shellHasOnePath(*g, head_shell, tail_shell)) {
DEBUG_PRINTF("single component\n");
comps.push_back(std::move(g));
return;
}
auto ug = make_undirected_graph(*g);
// Filter specials and shell vertices from undirected graph.
unordered_set<NFAVertex> bad_vertices(
{g->start, g->startDs, g->accept, g->acceptEod});
bad_vertices.insert(head_shell.begin(), head_shell.end());
bad_vertices.insert(tail_shell.begin(), tail_shell.end());
auto filtered_ug = boost::make_filtered_graph(
ug, boost::keep_all(), make_bad_vertex_filter(&bad_vertices));
// Actually run the connected components algorithm.
map<NFAVertex, u32> split_components;
const u32 num = connected_components(
filtered_ug, boost::make_assoc_property_map(split_components));
assert(num > 0);
if (num == 1 && shell_edges.empty()) {
DEBUG_PRINTF("single component\n");
comps.push_back(std::move(g));
return;
}
DEBUG_PRINTF("broke graph into %u components\n", num);
vector<deque<NFAVertex>> verts(num);
// Collect vertex lists per component.
for (const auto &m : split_components) {
NFAVertex v = m.first;
u32 c = m.second;
verts[c].push_back(v);
DEBUG_PRINTF("vertex %zu is in comp %u\n", (*g)[v].index, c);
}
unordered_map<NFAVertex, NFAVertex> v_map; // temp map for fillHolder
for (auto &vv : verts) {
// Shells are in every component.
vv.insert(vv.end(), begin(head_shell), end(head_shell));
vv.insert(vv.end(), begin(tail_shell), end(tail_shell));
/* Sort for determinism. Still required as NFAUndirectedVertex have
* no deterministic ordering (split_components map). */
sort(begin(vv), end(vv));
auto gc = ue2::make_unique<NGHolder>();
v_map.clear();
fillHolder(gc.get(), *g, vv, &v_map);
// Remove shell edges, which will get their own component.
for (const auto &e : shell_edges) {
auto cu = v_map.at(source(e, *g));
auto cv = v_map.at(target(e, *g));
assert(edge(cu, cv, *gc).second);
remove_edge(cu, cv, *gc);
}
pruneUseless(*gc);
DEBUG_PRINTF("component %zu has %zu vertices\n", comps.size(),
num_vertices(*gc));
comps.push_back(move(gc));
}
// Another component to handle the direct shell-to-shell edges.
if (!shell_edges.empty()) {
deque<NFAVertex> vv;
vv.insert(vv.end(), begin(head_shell), end(head_shell));
vv.insert(vv.end(), begin(tail_shell), end(tail_shell));
auto gc = ue2::make_unique<NGHolder>();
v_map.clear();
fillHolder(gc.get(), *g, vv, &v_map);
pruneUseless(*gc);
DEBUG_PRINTF("shell edge component %zu has %zu vertices\n",
comps.size(), num_vertices(*gc));
comps.push_back(move(gc));
*shell_comp = true;
}
// Ensure that only vertices with accept edges have reports.
for (auto &gc : comps) {
assert(gc);
clearReports(*gc);
}
// We should never produce empty component graphs.
assert(all_of(begin(comps), end(comps),
[](const unique_ptr<NGHolder> &g_comp) {
return num_vertices(*g_comp) > N_SPECIALS;
}));
}
deque<unique_ptr<NGHolder>> calcComponents(unique_ptr<NGHolder> g,
const Grey &grey) {
deque<unique_ptr<NGHolder>> comps;
// For trivial cases, we needn't bother running the full
// connected_components algorithm.
if (!grey.calcComponents || isAlternationOfClasses(*g)) {
comps.push_back(std::move(g));
return comps;
}
bool shell_comp = false;
splitIntoComponents(std::move(g), comps, depth(MAX_HEAD_SHELL_DEPTH),
depth(MAX_TAIL_SHELL_DEPTH), &shell_comp);
if (shell_comp) {
DEBUG_PRINTF("re-running on shell comp\n");
assert(!comps.empty());
auto sc = std::move(comps.back());
comps.pop_back();
splitIntoComponents(std::move(sc), comps, depth(0), depth(0),
&shell_comp);
}
DEBUG_PRINTF("finished; split into %zu components\n", comps.size());
return comps;
}
void recalcComponents(deque<unique_ptr<NGHolder>> &comps, const Grey &grey) {
if (!grey.calcComponents) {
return;
}
deque<unique_ptr<NGHolder>> out;
for (auto &gc : comps) {
if (!gc) {
continue; // graph has been consumed already.
}
if (isAlternationOfClasses(*gc)) {
out.push_back(std::move(gc));
continue;
}
auto gc_comps = calcComponents(std::move(gc), grey);
out.insert(end(out), std::make_move_iterator(begin(gc_comps)),
std::make_move_iterator(end(gc_comps)));
}
// Replace comps with our recalculated list.
comps.swap(out);
}
} // namespace ue2
|