1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
/*
* Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Bounded repeat compile-time code.
*/
#include "repeatcompile.h"
#include "util/bitutils.h"
#include "util/charreach.h"
#include "util/depth.h"
#include "util/dump_charclass.h"
#include "util/multibit_build.h"
#include "util/verify_types.h"
#include <algorithm>
#include <cstring> // memset
#include <utility>
using namespace std;
namespace ue2 {
/** \brief Calculate the number of slots required to store the given repeat in
* a RANGE model. */
static
u32 numRangeSlots(u32 repeatMin, u32 repeatMax) {
assert(repeatMax > repeatMin);
u32 d = repeatMax - repeatMin;
u32 slots = 2 * ((repeatMax / d) + 1);
return slots;
}
static
u32 calcPackedBits(u64a val) {
assert(val);
if (val <= 1) {
return 1;
}
u32 bits = lg2_64(val - 1) + 1U; /* lg2 rounds down */
DEBUG_PRINTF("packing %llu into %u bits\n", val, bits);
return bits;
}
/* returns the min number of bytes required to represent val options */
u32 calcPackedBytes(u64a val) {
u32 rv = (calcPackedBits(val) + 7U) / 8U;
DEBUG_PRINTF("packing %llu into %u bytes\n", val, rv);
return rv;
}
static
u32 repeatRecurTable(struct RepeatStateInfo *info, const depth &repeatMax,
const u32 minPeriod) {
u32 repeatTmp = info->patchCount > 2 ? 64 : (u32)repeatMax;
u32 repeat_index = repeatTmp < minPeriod ? repeatTmp : minPeriod;
for (u32 i = 0; i <= repeat_index; i++) {
info->table.push_back(i + 1);
}
for (u32 i = minPeriod + 1; i <= repeatTmp; i++) {
info->table.push_back(info->table[i - 1] + info->table[i - minPeriod]);
if (info->table[i] < info->table[i - 1]) {
return i - 1;
}
}
return 0;
}
static
u32 findOptimalPatchSize(struct RepeatStateInfo *info, const depth &repeatMax,
const u32 minPeriod, u32 rv) {
u32 cnt = 0;
u32 patch_bits = 0;
u32 total_size = 0;
u32 min = ~0U;
u32 patch_len = 0;
if (!rv) {
rv = repeatMax;
}
for (u32 i = minPeriod; i <= rv; i++) {
cnt = ((u32)repeatMax + (i - 1)) / i + 1;
// no bit packing version
patch_bits = calcPackedBits(info->table[i]);
total_size = (patch_bits + 7U) / 8U * cnt;
if (total_size < min) {
patch_len = i;
min = total_size;
info->patchCount = cnt;
}
}
return patch_len;
}
RepeatStateInfo::RepeatStateInfo(enum RepeatType type, const depth &repeatMin,
const depth &repeatMax, u32 minPeriod)
: stateSize(0), packedCtrlSize(0), horizon(0), patchCount(0),
patchSize(0), encodingSize(0), patchesOffset(0) {
if (type == REPEAT_SPARSE_OPTIMAL_P && minPeriod == 0) {
assert(0);
throw std::domain_error("SPARSE_OPTIMAL_P must have non-zero minPeriod.");
}
assert(repeatMin <= repeatMax);
assert(repeatMax.is_reachable());
assert(minPeriod || type != REPEAT_SPARSE_OPTIMAL_P);
switch (type) {
case REPEAT_FIRST:
assert(repeatMin.is_finite());
stateSize = 0; // everything is in the control block.
horizon = repeatMin;
packedCtrlSize = calcPackedBytes(horizon + 1);
break;
case REPEAT_LAST:
assert(repeatMax.is_finite());
stateSize = 0; // everything is in the control block.
horizon = repeatMax + 1;
packedCtrlSize = calcPackedBytes(horizon + 1);
break;
case REPEAT_RING:
assert(repeatMax.is_finite());
stateSize = mmbit_size(repeatMax + 1);
horizon = repeatMax * 2 + 1; /* TODO: investigate tightening */
// Packed offset member, plus two bytes for each ring index, reduced to
// one byte each if they'll fit in eight bits.
{
u32 offset_len = calcPackedBytes(horizon + 1);
u32 ring_indices_len = repeatMax < depth(254) ? 2 : 4;
packedCtrlSize = offset_len + ring_indices_len;
}
break;
case REPEAT_RANGE:
assert(repeatMax.is_finite());
assert(repeatMin < repeatMax);
stateSize = numRangeSlots(repeatMin, repeatMax) * sizeof(u16);
horizon = repeatMax * 2 + 1;
// Packed offset member, plus one byte for the number of range
// elements.
packedCtrlSize = calcPackedBytes(horizon + 1) + 1;
break;
case REPEAT_BITMAP:
stateSize = 0; // everything is in the control block.
horizon = 0; // unused
packedCtrlSize = ROUNDUP_N(repeatMax + 1, 8) / 8;
break;
case REPEAT_SPARSE_OPTIMAL_P:
assert(minPeriod);
assert(repeatMax.is_finite());
{
u32 rv = repeatRecurTable(this, repeatMax, minPeriod);
u32 repeatTmp = 0;
if ((u32)repeatMax < minPeriod) {
repeatTmp = repeatMax;
patchCount = 1;
} else {
// find optimal patch size
repeatTmp =
findOptimalPatchSize(this, repeatMax, minPeriod, rv);
assert(patchCount < 65536);
}
DEBUG_PRINTF("repeat[%u %u], period=%u\n", (u32)repeatMin,
(u32)repeatMax, minPeriod);
u64a maxVal = table[repeatTmp];
encodingSize = calcPackedBytes(maxVal);
patchSize = repeatTmp;
assert(encodingSize <= 64);
patchesOffset = mmbit_size(patchCount);
stateSize = patchesOffset + encodingSize * patchCount;
horizon = (repeatTmp * patchCount) * 2 + 1;
u32 ring_indices_len = patchCount < depth(254) ? 2 : 4;
packedCtrlSize = calcPackedBytes(horizon + 1) + ring_indices_len;
}
break;
case REPEAT_TRAILER:
assert(repeatMax.is_finite());
assert(repeatMin <= depth(64));
stateSize = 0; // everything is in the control block.
horizon = repeatMax + 1;
packedFieldSizes.resize(2);
packedFieldSizes[0] = calcPackedBits(horizon + 1);
packedFieldSizes[1] = repeatMin;
packedCtrlSize = (packedFieldSizes[0] + packedFieldSizes[1] + 7U) / 8U;
break;
case REPEAT_ALWAYS:
assert(repeatMin == 0ULL);
assert(repeatMax.is_infinite());
stateSize = 0; // everything is in the control block.
horizon = 0;
packedCtrlSize = 0;
break;
}
DEBUG_PRINTF("stateSize=%u, packedCtrlSize=%u, horizon=%u\n", stateSize,
packedCtrlSize, horizon);
assert(packedCtrlSize <= sizeof(RepeatControl));
}
/** \brief Returns the packed control block size in bytes for a given bounded
* repeat. */
static
u32 packedSize(enum RepeatType type, const depth &repeatMin,
const depth &repeatMax, u32 minPeriod) {
RepeatStateInfo rsi(type, repeatMin, repeatMax, minPeriod);
return rsi.packedCtrlSize;
}
/** \brief Returns the stream state size in bytes for a given bounded
* repeat. */
static
u32 streamStateSize(enum RepeatType type, const depth &repeatMin,
const depth &repeatMax, u32 minPeriod) {
RepeatStateInfo rsi(type, repeatMin, repeatMax, minPeriod);
return rsi.stateSize;
}
enum RepeatType chooseRepeatType(const depth &repeatMin, const depth &repeatMax,
u32 minPeriod, bool is_reset,
bool has_external_guard) {
if (repeatMax.is_infinite()) {
if (has_external_guard && !repeatMin) {
return REPEAT_ALWAYS;
} else {
return REPEAT_FIRST;
}
}
if (repeatMin == depth(0) || is_reset) {
return REPEAT_LAST;
}
// Cases with max < 64 can be handled with either bitmap or trailer. We use
// whichever has smaller packed state.
if (repeatMax < depth(64)) {
u32 bitmap_len =
packedSize(REPEAT_BITMAP, repeatMin, repeatMax, minPeriod);
u32 trailer_len =
packedSize(REPEAT_TRAILER, repeatMin, repeatMax, minPeriod);
return bitmap_len <= trailer_len ? REPEAT_BITMAP : REPEAT_TRAILER;
}
if (repeatMin <= depth(64)) {
return REPEAT_TRAILER;
}
u32 range_len = ~0U;
if (repeatMax > repeatMin &&
numRangeSlots(repeatMin, repeatMax) <= REPEAT_RANGE_MAX_SLOTS) {
assert(numRangeSlots(repeatMin, repeatMax) < 256); // stored in u8
range_len =
streamStateSize(REPEAT_RANGE, repeatMin, repeatMax, minPeriod);
}
assert(repeatMax.is_finite());
u32 sparse_len = ~0U;
if (minPeriod > 6) {
sparse_len =
streamStateSize(REPEAT_SPARSE_OPTIMAL_P, repeatMin, repeatMax, minPeriod);
}
if (range_len != ~0U || sparse_len != ~0U) {
return range_len < sparse_len ? REPEAT_RANGE : REPEAT_SPARSE_OPTIMAL_P;
}
return REPEAT_RING;
}
bool matches(vector<CharReach>::const_iterator a_it,
vector<CharReach>::const_iterator a_ite,
vector<CharReach>::const_iterator b_it,
UNUSED vector<CharReach>::const_iterator b_ite) {
for (; a_it != a_ite; ++a_it, ++b_it) {
assert(b_it != b_ite);
if ((*a_it & *b_it).none()) {
return false;
}
}
assert(b_it == b_ite);
return true;
}
static
u32 minDistAfterA(const vector<CharReach> &a, const vector<CharReach> &b) {
/* we do not count the case where b can end at the same position as a */
for (u32 i = 1; i < b.size(); i++) {
u32 overlap_len = b.size() - i;
if (overlap_len <= a.size()) {
if (matches(a.end() - overlap_len, a.end(),
b.begin(), b.end() - i)) {
return i;
}
} else {
assert(overlap_len > a.size());
if (matches(a.begin(), a.end(),
b.end() - i - a.size(), b.end() - i)) {
return i;
}
}
}
return b.size();
}
vector<size_t> minResetDistToEnd(const vector<vector<CharReach>> &triggers,
const CharReach &cr) {
/* if a trigger does not reset the repeat, it gets a distance of trigger
length */
vector<size_t> out;
for (const auto &trig : triggers) {
size_t size = trig.size();
size_t i = 0;
for (; i < size; i++) {
if ((trig[size - i - 1] & cr).none()) {
break;
}
}
out.push_back(i);
}
return out;
}
#if defined(DEBUG) || defined(DUMP_SUPPORT)
static UNUSED
string dumpTrigger(const vector<CharReach> &trigger) {
string s;
for (const auto &cr : trigger) {
s += describeClass(cr);
}
return s;
}
#endif
u32 minPeriod(const vector<vector<CharReach>> &triggers, const CharReach &cr,
bool *can_reset) {
assert(!triggers.empty());
u32 rv = ~0U;
*can_reset = true;
vector<size_t> min_reset_dist = minResetDistToEnd(triggers, cr);
for (const auto &trigger : triggers) {
DEBUG_PRINTF("trigger: %s\n", dumpTrigger(trigger).c_str());
for (size_t j = 0; j < triggers.size(); j++) {
u32 min_ext = minDistAfterA(trigger, triggers[j]);
rv = min(rv, min_ext);
if (min_ext <= min_reset_dist[j]) {
*can_reset = false;
}
}
}
DEBUG_PRINTF("min period %u\n", rv);
return rv;
}
} // namespace ue2
|