1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "mcclellancompile_util.h"
#include "rdfa.h"
#include "util/container.h"
#include "util/hash.h"
#include "ue2common.h"
#include <deque>
#include <map>
using namespace std;
namespace ue2 {
#define INIT_STATE 1
static
bool state_has_reports(const raw_dfa &raw, dstate_id_t s) {
const auto &ds = raw.states[s];
return !ds.reports.empty() || !ds.reports_eod.empty();
}
static
u32 count_dots(const raw_dfa &raw) {
assert(raw.start_anchored == INIT_STATE);
u32 i = INIT_STATE;
for (; i < raw.states.size() && i != raw.start_floating; i++) {
DEBUG_PRINTF("checking %u\n", i);
assert(raw.states[i].reports.empty());
assert(raw.states[i].reports_eod.empty());
for (symbol_t s = 0; s < raw.getImplAlphaSize(); s++) {
DEBUG_PRINTF("%hu -> %hu\n", s, raw.states[i].next[s]);
if (raw.states[i].next[s] != i + 1) {
goto validate;
}
}
if (state_has_reports(raw, raw.states[i].next[0])) {
goto validate;
}
DEBUG_PRINTF("got dot\n");
}
validate:
u32 dot_count = i - INIT_STATE;
/* we need to check that no later state has a transition into these leading
* dots */
for (; i < raw.states.size(); i++) {
for (symbol_t s = 0; s < raw.getImplAlphaSize(); s++) {
DEBUG_PRINTF("%hu -> %hu\n", s, raw.states[i].next[s]);
dstate_id_t n = raw.states[i].next[s];
if (n != DEAD_STATE && n <= dot_count) {
return 0;
}
}
}
return dot_count;
}
static
void prune_leading_states(raw_dfa &raw, u32 count) {
if (!count) {
return;
}
for (u32 i = INIT_STATE + count; i < raw.states.size(); i++) {
dstate &curr = raw.states[i - count];
curr = raw.states[i];
if (curr.daddy > count) {
curr.daddy -= count;
} else {
curr.daddy = DEAD_STATE;
}
for (u32 j = 0; j < raw.alpha_size; j++) {
assert(curr.next[j] == DEAD_STATE || curr.next[j] > count);
if (curr.next[j]) {
curr.next[j] -= count;
}
}
}
raw.states.erase(raw.states.end() - count, raw.states.end());
}
u32 remove_leading_dots(raw_dfa &raw) {
u32 count = count_dots(raw);
prune_leading_states(raw, count);
DEBUG_PRINTF("removed %u leading dots\n", count);
return count;
}
static never_inline
u32 calc_min_dist_from_bob(raw_dfa &raw, vector<u32> *dist_in) {
vector<u32> &dist = *dist_in;
dist.assign(raw.states.size(), ~0U);
assert(raw.start_anchored != DEAD_STATE);
deque<dstate_id_t> to_visit = { raw.start_anchored };
dist[raw.start_anchored] = 0;
u32 last_d = 0;
while (!to_visit.empty()) {
dstate_id_t s = to_visit.front();
DEBUG_PRINTF("inspecting %u\n", s);
to_visit.pop_front();
assert(s != DEAD_STATE);
u32 d = dist[s];
assert(d >= last_d);
assert(d != ~0U);
for (dstate_id_t t : raw.states[s].next) {
if (t == DEAD_STATE) {
continue;
}
if (dist[t] == ~0U) {
to_visit.push_back(t);
dist[t] = d + 1;
} else {
assert(dist[t] <= d + 1);
}
}
last_d = d;
}
return last_d;
}
bool clear_deeper_reports(raw_dfa &raw, u32 max_offset) {
DEBUG_PRINTF("clearing reports on states deeper than %u\n", max_offset);
vector<u32> bob_dist;
u32 max_min_dist_bob = calc_min_dist_from_bob(raw, &bob_dist);
if (max_min_dist_bob <= max_offset) {
return false;
}
bool changed = false;
for (u32 s = DEAD_STATE + 1; s < raw.states.size(); s++) {
if (bob_dist[s] > max_offset && state_has_reports(raw, s)) {
DEBUG_PRINTF("clearing reports on %u (depth %u)\n", s, bob_dist[s]);
auto &ds = raw.states[s];
ds.reports.clear();
ds.reports_eod.clear();
changed = true;
}
}
if (!changed) {
return false;
}
// We may have cleared all reports from the DFA, in which case it should
// become empty.
if (all_of_in(raw.states, [](const dstate &ds) {
return ds.reports.empty() && ds.reports_eod.empty();
})) {
DEBUG_PRINTF("no reports left at all, dfa is dead\n");
raw.start_anchored = DEAD_STATE;
raw.start_floating = DEAD_STATE;
}
return true;
}
set<ReportID> all_reports(const raw_dfa &rdfa) {
set<ReportID> all;
for (const auto &ds : rdfa.states) {
insert(&all, ds.reports);
insert(&all, ds.reports_eod);
}
return all;
}
bool has_eod_accepts(const raw_dfa &rdfa) {
for (const auto &ds : rdfa.states) {
if (!ds.reports_eod.empty()) {
return true;
}
}
return false;
}
bool has_non_eod_accepts(const raw_dfa &rdfa) {
for (const auto &ds : rdfa.states) {
if (!ds.reports.empty()) {
return true;
}
}
return false;
}
size_t hash_dfa_no_reports(const raw_dfa &rdfa) {
size_t v = 0;
hash_combine(v, rdfa.alpha_size);
hash_combine(v, rdfa.alpha_remap);
for (const auto &ds : rdfa.states) {
hash_combine(v, ds.next);
}
return v;
}
size_t hash_dfa(const raw_dfa &rdfa) {
size_t v = 0;
hash_combine(v, hash_dfa_no_reports(rdfa));
hash_combine(v, all_reports(rdfa));
return v;
}
static
bool can_die_early(const raw_dfa &raw, dstate_id_t s,
map<dstate_id_t, u32> &visited, u32 age_limit) {
if (contains(visited, s) && visited[s] >= age_limit) {
/* we have already visited (or are in the process of visiting) here with
* a looser limit. */
return false;
}
visited[s] = age_limit;
if (s == DEAD_STATE) {
return true;
}
if (age_limit == 0) {
return false;
}
for (const auto &next : raw.states[s].next) {
if (can_die_early(raw, next, visited, age_limit - 1)) {
return true;
}
}
return false;
}
bool can_die_early(const raw_dfa &raw, u32 age_limit) {
map<dstate_id_t, u32> visited;
return can_die_early(raw, raw.start_anchored, visited, age_limit);
}
bool is_dead(const raw_dfa &rdfa) {
return rdfa.start_anchored == DEAD_STATE &&
rdfa.start_floating == DEAD_STATE;
}
} // namespace ue2
|