1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
|
/*
* Copyright (c) 2015-2018, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "goughcompile.h"
#include "accel.h"
#include "goughcompile_dump.h"
#include "goughcompile_internal.h"
#include "gough_internal.h"
#include "grey.h"
#include "mcclellancompile.h"
#include "nfa_internal.h"
#include "util/compile_context.h"
#include "util/container.h"
#include "util/flat_containers.h"
#include "util/graph_range.h"
#include "util/make_unique.h"
#include "util/order_check.h"
#include "util/report_manager.h"
#include "util/verify_types.h"
#include "ue2common.h"
#include <algorithm>
#include <boost/dynamic_bitset.hpp>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_keys;
using boost::adaptors::map_values;
using boost::vertex_index;
namespace ue2 {
void raw_som_dfa::stripExtraEodReports(void) {
/* if a state generates a given report as a normal accept - then it does
* not also need to generate an eod report for it */
for (vector<dstate_som>::iterator it = state_som.begin();
it != state_som.end(); ++it) {
for (const som_report &sr : it->reports) {
it->reports_eod.erase(sr);
}
dstate &norm = states[it - state_som.begin()];
norm.reports_eod.clear();
for (const som_report &sr : it->reports_eod) {
norm.reports_eod.insert(sr.report);
}
}
}
namespace {
class gough_build_strat : public mcclellan_build_strat {
public:
gough_build_strat(
raw_som_dfa &r, const GoughGraph &g, const ReportManager &rm_in,
const map<dstate_id_t, gough_accel_state_info> &accel_info)
: mcclellan_build_strat(r, rm_in, false), rdfa(r), gg(g),
accel_gough_info(accel_info) {}
unique_ptr<raw_report_info> gatherReports(vector<u32> &reports /* out */,
vector<u32> &reports_eod /* out */,
u8 *isSingleReport /* out */,
ReportID *arbReport /* out */) const override;
AccelScheme find_escape_strings(dstate_id_t this_idx) const override;
size_t accelSize(void) const override { return sizeof(gough_accel); }
void buildAccel(dstate_id_t this_idx, const AccelScheme &info,
void *accel_out) override;
u32 max_allowed_offset_accel() const override { return 0; }
DfaType getType() const override { return Gough; }
raw_som_dfa &rdfa;
const GoughGraph ≫
map<dstate_id_t, gough_accel_state_info> accel_gough_info;
map<gough_accel *, dstate_id_t> built_accel;
};
}
GoughSSAVar::~GoughSSAVar() {
}
void GoughSSAVar::clear_outputs() {
for (GoughSSAVarWithInputs *var : outputs) {
var->remove_input_raw(this);
}
outputs.clear();
}
void GoughSSAVarWithInputs::clear_all() {
clear_inputs();
clear_outputs();
}
void GoughSSAVarMin::clear_inputs() {
for (GoughSSAVar *var : inputs) {
assert(contains(var->outputs, this));
var->outputs.erase(this);
}
inputs.clear();
}
void GoughSSAVarMin::replace_input(GoughSSAVar *old_v, GoughSSAVar *new_v) {
assert(contains(inputs, old_v));
inputs.erase(old_v);
old_v->outputs.erase(this);
inputs.insert(new_v);
new_v->outputs.insert(this);
}
static
void translateRawReports(UNUSED GoughGraph &cfg, UNUSED const raw_som_dfa &raw,
const flat_map<u32, GoughSSAVarJoin *> &joins_at_s,
UNUSED GoughVertex s,
const set<som_report> &reports_in,
vector<pair<ReportID, GoughSSAVar *> > *reports_out) {
for (const som_report &sr : reports_in) {
DEBUG_PRINTF("state %u: report %u slot %d\n", cfg[s].state_id,
sr.report, sr.slot);
GoughSSAVar *var = nullptr;
if (sr.slot == CREATE_NEW_SOM) {
assert(!generates_callbacks(raw.kind));
} else {
var = joins_at_s.at(sr.slot);
}
reports_out->push_back(make_pair(sr.report, var));
}
}
static
void makeCFG_reports(GoughGraph &cfg, const raw_som_dfa &raw,
const vector<flat_map<u32, GoughSSAVarJoin *> > &joins,
const vector<GoughVertex> &vertices) {
for (u32 i = 1; i < raw.states.size(); ++i) {
GoughVertex s = vertices[i];
const flat_map<u32, GoughSSAVarJoin *> &joins_at_s
= joins[get(vertex_index, cfg, s)];
translateRawReports(cfg, raw, joins_at_s, s,
raw.state_som[i].reports, &cfg[s].reports);
translateRawReports(cfg, raw, joins_at_s, s,
raw.state_som[i].reports_eod, &cfg[s].reports_eod);
}
}
static never_inline
void makeCFG_top_edge(GoughGraph &cfg, const vector<GoughVertex> &vertices,
const vector<flat_map<u32, GoughSSAVarJoin *> > &joins,
u32 trigger_slot, const som_tran_info &src_slots,
const som_tran_info &dest_slot_pred,
dstate_id_t i, dstate_id_t n, const GoughEdge &e) {
GoughVertex s = vertices[i];
GoughVertex t = vertices[n];
const flat_map<u32, GoughSSAVarJoin *> &joins_at_s
= joins[get(vertex_index, cfg, s)];
const flat_map<u32, GoughSSAVarJoin *> &joins_at_t
= joins[get(vertex_index, cfg, t)];
DEBUG_PRINTF("top for %u -> %u\n", i, n);
for (som_tran_info::const_iterator it = dest_slot_pred.begin();
it != dest_slot_pred.end(); ++it) {
/* for ordering, need to ensure that new values feeding directly
* into mins come first */
u32 slot_id = it->first;
shared_ptr<GoughSSAVarNew> vnew;
if (slot_id == trigger_slot) {
vnew = make_shared<GoughSSAVarNew>(0U);
cfg[e].vars.push_back(vnew);
} else {
assert(contains(src_slots, slot_id));
}
GoughSSAVar *final_var;
if (vnew && !contains(src_slots, slot_id)) {
final_var = vnew.get();
DEBUG_PRINTF("bypassing min on join %u\n", slot_id);
} else if (!vnew) {
final_var = joins_at_s.at(slot_id);
DEBUG_PRINTF("bypassing min on join %u\n", slot_id);
} else {
assert(vnew);
assert(contains(src_slots, slot_id));
shared_ptr<GoughSSAVarMin> vmin = make_shared<GoughSSAVarMin>();
cfg[e].vars.push_back(vmin);
final_var = vmin.get();
DEBUG_PRINTF("slot %u gets a new value\n", slot_id);
vmin->add_input(vnew.get());
DEBUG_PRINTF("slot %u is constant\n", slot_id);
vmin->add_input(joins_at_s.at(slot_id));
}
/* wire to destination target */
GoughSSAVarJoin *vk = joins_at_t.at(slot_id);
vk->add_input(final_var, e);
}
}
static never_inline
void makeCFG_edge(GoughGraph &cfg, const map<u32, u32> &som_creators,
const vector<GoughVertex> &vertices,
const vector<flat_map<u32, GoughSSAVarJoin *> > &joins,
const som_tran_info &src_slots,
const som_tran_info &dest_slot_pred, dstate_id_t i,
dstate_id_t n, const GoughEdge &e) {
GoughVertex s = vertices[i];
GoughVertex t = vertices[n];
const flat_map<u32, GoughSSAVarJoin *> &joins_at_s
= joins[get(vertex_index, cfg, s)];
const flat_map<u32, GoughSSAVarJoin *> &joins_at_t
= joins[get(vertex_index, cfg, t)];
map<u32, shared_ptr<GoughSSAVarNew> > vnew_by_adj;
for (som_tran_info::const_iterator it = dest_slot_pred.begin();
it != dest_slot_pred.end(); ++it) {
/* for ordering, need to ensure that new values feeding directly
* into mins come first */
u32 slot_id = it->first;
if (contains(som_creators, slot_id) && !som_creators.at(slot_id)) {
continue;
}
shared_ptr<GoughSSAVarNew> vnew;
const vector<u32> &inputs = it->second;
u32 useful_input_count = 0;
u32 first_useful_input = ~0U;
for (const u32 &input_slot : inputs) {
if (!contains(src_slots, input_slot)) {
continue;
}
DEBUG_PRINTF("%u is useful\n", input_slot);
if (!vnew || !contains(som_creators, input_slot)) {
useful_input_count++;
if (useful_input_count == 1) {
first_useful_input = input_slot;
}
}
if (contains(som_creators, input_slot)) {
u32 adjust = som_creators.at(input_slot);
if (vnew && vnew->adjust >= adjust) {
DEBUG_PRINTF("skipping %u as domininated by adj%u\n",
adjust, vnew->adjust);
continue; /* deeper starts can be seen to statically
dominate */
}
if (contains(vnew_by_adj, adjust)) {
vnew = vnew_by_adj[adjust];
} else {
vnew = make_shared<GoughSSAVarNew>(adjust);
cfg[e].vars.push_back(vnew);
vnew_by_adj[adjust] = vnew;
}
assert(vnew);
}
}
/* If we have a new start of match (with no offset or 1 byte offset) and
* other variables coming in, the new will always be dominated by the
* existing variables (as they must be at least one byte into the match)
* -- and so can be dropped. */
if (vnew && vnew->adjust < 2 && useful_input_count > 1) {
useful_input_count--;
vnew.reset();
/* need to reestablish the first useful input */
for (const u32 &input_slot : inputs) {
if (!contains(src_slots, input_slot)) {
continue;
}
if (!contains(som_creators, input_slot)) {
first_useful_input = input_slot;
}
}
}
GoughSSAVar *final_var;
if (useful_input_count == 1) {
if (vnew) {
final_var = vnew.get();
} else {
assert(first_useful_input != ~0U);
final_var = joins_at_s.at(first_useful_input);
}
DEBUG_PRINTF("bypassing min on join %u\n", slot_id);
} else {
shared_ptr<GoughSSAVarMin> vmin = make_shared<GoughSSAVarMin>();
cfg[e].vars.push_back(vmin);
final_var = vmin.get();
if (vnew) {
vmin->add_input(vnew.get());
}
/* wire the normal inputs to the min */
for (const u32 &input_slot : inputs) {
if (!contains(src_slots, input_slot)) {
continue;
}
if (!contains(som_creators, input_slot)) {
vmin->add_input(joins_at_s.at(input_slot));
}
}
assert(vmin->get_inputs().size() > 1);
DEBUG_PRINTF("wire min to join %u\n", slot_id);
}
GoughSSAVarJoin *vk = joins_at_t.at(slot_id);
assert(final_var);
vk->add_input(final_var, e);
}
}
static never_inline
unique_ptr<GoughGraph> makeCFG(const raw_som_dfa &raw) {
vector<GoughVertex> vertices;
vertices.reserve(raw.states.size());
unique_ptr<GoughGraph> cfg = ue2::make_unique<GoughGraph>();
u32 min_state = !is_triggered(raw.kind);
if (min_state) {
vertices.push_back(GoughGraph::null_vertex()); /* skip dead state */
}
vector<flat_map<u32, GoughSSAVarJoin *> > joins(raw.states.size());
for (u32 i = min_state; i < raw.states.size(); ++i) {
GoughVertex v = add_vertex(GoughVertexProps(i), *cfg);
vertices.push_back(v);
/* create JOIN variables */
for (som_tran_info::const_iterator it = raw.state_som[i].preds.begin();
it != raw.state_som[i].preds.end(); ++it) {
u32 slot_id = it->first;
if (!contains(raw.new_som_nfa_states, slot_id)
|| raw.new_som_nfa_states.at(slot_id)) {
(*cfg)[v].vars.push_back(make_shared<GoughSSAVarJoin>());
joins[get(vertex_index, *cfg, v)][slot_id]
= (*cfg)[v].vars.back().get();
DEBUG_PRINTF("dfa %u:: slot %u\n", i, slot_id);
}
}
}
u16 top_sym = raw.alpha_remap[TOP];
DEBUG_PRINTF("top: %hu, kind %s\n", top_sym, to_string(raw.kind).c_str());
/* create edges, JOIN variables (on edge targets) */
map<dstate_id_t, GoughEdge> seen;
for (u32 i = min_state; i < raw.states.size(); ++i) {
seen.clear(); /* seen is really local to each state */
DEBUG_PRINTF("creating edges out of %u/%zu\n", i, raw.states.size());
GoughVertex s = vertices[i];
const vector<dstate_id_t> &next = raw.states[i].next;
for (u32 j = 0; j < next.size(); ++j) {
if (!is_triggered(raw.kind) && j == top_sym) {
continue;
}
dstate_id_t n = next[j];
DEBUG_PRINTF(" edge to %hu out on %u\n", n, j);
assert(n < raw.states.size());
GoughVertex t = vertices[n];
if (j == top_sym) {
GoughEdge e = add_edge(s, t, *cfg).first;
(*cfg)[e].top = true;
makeCFG_top_edge(*cfg, vertices, joins, raw.trigger_nfa_state,
raw.state_som[i].preds, raw.state_som[n].preds,
i, n, e);
} else {
if (contains(seen, n)) {
const GoughEdge &e = seen[n];
(*cfg)[e].reach.set(j);
continue;
}
GoughEdge e = add_edge(s, t, *cfg).first;
(*cfg)[e].reach.set(j);
seen[n] = e;
makeCFG_edge(*cfg, raw.new_som_nfa_states, vertices, joins,
raw.state_som[i].preds, raw.state_som[n].preds,
i, n, e);
}
}
}
/* populate reports */
makeCFG_reports(*cfg, raw, joins, vertices);
using boost::graph_bundle;
if (is_triggered(raw.kind)) {
(*cfg)[graph_bundle].initial_vertex = vertices[DEAD_STATE];
} else {
(*cfg)[graph_bundle].initial_vertex = vertices[raw.start_anchored];
}
return cfg;
}
static
void copy_propagate_report_set(vector<pair<ReportID, GoughSSAVar *> > &rep) {
vector<pair<ReportID, GoughSSAVar *> >::iterator it = rep.begin();
while (it != rep.end()) {
GoughSSAVar *var = it->second;
if (!var) {
++it;
continue;
}
const flat_set<GoughSSAVar *> &inputs = var->get_inputs();
if (inputs.size() != 1) {
++it;
continue;
}
it->second = *inputs.begin(); /* note may result in dupes,
filter later */
}
}
template<typename VarP>
void copy_propagate_update_vars(vector<VarP> &vars, bool *changes) {
for (u32 i = 0; i < vars.size(); i++) {
GoughSSAVar *vp = vars[i].get();
const flat_set<GoughSSAVar *> &inputs = vp->get_inputs();
/* no need to worry about data coming from self; ignore self loops */
GoughSSAVar *new_input = nullptr;
if (inputs.size() == 1) {
new_input = *inputs.begin();
} else if (inputs.size() == 2) {
flat_set<GoughSSAVar *>::const_iterator jt = inputs.begin();
GoughSSAVar *i_0 = *jt;
GoughSSAVar *i_1 = *++jt;
if (i_0 == vp) {
new_input = i_1;
} else if (i_1 == vp) {
new_input = i_0;
}
}
if (!new_input) {
continue;
}
assert(new_input != vp);
/* copy set as it will be modified by iteration */
const flat_set<GoughSSAVarWithInputs *> outputs = vp->get_outputs();
for (GoughSSAVar *curr : outputs) {
curr->replace_input(vp, new_input);
*changes = true;
}
}
}
static
void copy_propagation(GoughGraph &g, const Grey &grey) {
if (!grey.goughCopyPropagate) {
return;
}
/* TODO order visit of variables sensibly */
bool changes = false;
do {
DEBUG_PRINTF("new iteration\n");
changes = false;
for (auto v : vertices_range(g)) {
copy_propagate_update_vars(g[v].vars, &changes);
}
for (const auto &e : edges_range(g)) {
copy_propagate_update_vars(g[e].vars, &changes);
}
} while(changes);
/* see if any reports can also be moved along */
for (auto v : vertices_range(g)) {
copy_propagate_report_set(g[v].reports);
copy_propagate_report_set(g[v].reports_eod);
}
}
static
void mark_live_reports(const vector<pair<ReportID, GoughSSAVar *> > &reps,
vector<GoughSSAVar *> *queue) {
for (const auto &r : reps) {
GoughSSAVar *var = r.second;
if (!var || var->seen) {
continue;
}
var->seen = true;
queue->push_back(var);
}
}
static
void remove_dead(GoughGraph &g) {
vector<GoughSSAVar *> queue;
for (auto v : vertices_range(g)) {
mark_live_reports(g[v].reports, &queue);
mark_live_reports(g[v].reports_eod, &queue);
}
while (!queue.empty()) {
GoughSSAVar *v = queue.back();
queue.pop_back();
for (GoughSSAVar *var : v->get_inputs()) {
if (var->seen) {
continue;
}
var->seen = true;
queue.push_back(var);
}
}
/* remove unused variables */
for (auto v : vertices_range(g)) {
for (u32 i = 0; i < g[v].vars.size(); i++) {
GoughSSAVar *var = g[v].vars[i].get();
if (var->seen) {
continue;
}
var->clear_all();
g[v].vars.erase(g[v].vars.begin() + i);
i--;
}
}
for (const auto &e : edges_range(g)) {
for (u32 i = 0; i < g[e].vars.size(); i++) {
GoughSSAVar *var = g[e].vars[i].get();
if (var->seen) {
continue;
}
var->clear_all();
g[e].vars.erase(g[e].vars.begin() + i);
i--;
}
}
}
static
gough_ins make_gough_ins(u8 op, u32 dest = INVALID_SLOT,
u32 src = INVALID_SLOT) {
assert(dest != INVALID_SLOT || op == GOUGH_INS_END);
assert(src != INVALID_SLOT || op == GOUGH_INS_END || op == GOUGH_INS_NEW);
gough_ins rv;
rv.op = op;
rv.dest = dest;
rv.src = src;
return rv;
}
void GoughSSAVarNew::generate(vector<gough_ins> *out) const {
assert(slot != INVALID_SLOT);
out->push_back(make_gough_ins(GOUGH_INS_NEW, slot, adjust));
}
#ifndef NDEBUG
template<typename C, typename K>
bool contains_loose(const C &container, const K &key) {
for (const auto &elem : container) {
if (elem == key) {
return true;
}
}
return false;
}
#endif
void GoughSSAVarMin::generate(vector<gough_ins> *out) const {
assert(slot != INVALID_SLOT);
assert(!inputs.empty());
// assert(inputs.size() > 1);
vector<u32> input_slots; /* for determinism */
bool first = true;
for (const GoughSSAVar *var : inputs) {
assert(contains_loose(var->outputs, this));
if (var->slot == slot) {
/* if the destination is one of the sources, no need to move it */
first = false;
} else {
input_slots.push_back(var->slot);
}
}
sort(input_slots.begin(), input_slots.end());
for (const u32 &input_slot : input_slots) {
if (first) {
out->push_back(make_gough_ins(GOUGH_INS_MOV, slot, input_slot));
first = false;
} else {
out->push_back(make_gough_ins(GOUGH_INS_MIN, slot, input_slot));
}
}
}
void GoughSSAVarMin::remove_input_raw(GoughSSAVar *v) {
assert(contains(inputs, v));
inputs.erase(v);
}
void GoughSSAVarJoin::generate(UNUSED vector<gough_ins> *out) const {
assert(0);
}
GoughSSAVar *GoughSSAVarJoin::get_input(const GoughEdge &prev) const {
for (const auto &var_edge : input_map) {
if (contains(var_edge.second, prev)) {
return var_edge.first;
}
}
assert(0);
return nullptr;
}
const flat_set<GoughEdge> &GoughSSAVarJoin::get_edges_for_input(
GoughSSAVar *input) const {
return input_map.at(input);
}
const map<GoughSSAVar *, flat_set<GoughEdge> > &GoughSSAVarJoin::get_input_map()
const {
return input_map;
}
void GoughSSAVarJoin::clear_inputs() {
for (GoughSSAVar *var : input_map | map_keys) {
assert(contains(var->outputs, this));
var->outputs.erase(this);
}
input_map.clear();
inputs.clear();
}
void GoughSSAVarJoin::replace_input(GoughSSAVar *old_v, GoughSSAVar *new_v) {
assert(contains(input_map, old_v));
assert(contains(inputs, old_v));
if (old_v == new_v) {
assert(0);
return;
}
insert(&input_map[new_v], input_map[old_v]);
input_map.erase(old_v);
inputs.erase(old_v);
inputs.insert(new_v);
old_v->outputs.erase(this);
new_v->outputs.insert(this);
}
void GoughSSAVarJoin::add_input(GoughSSAVar *v, GoughEdge prev) {
input_map[v].insert(prev);
inputs.insert(v);
v->outputs.insert(this);
}
void GoughSSAVarJoin::remove_input_raw(GoughSSAVar *v) {
assert(contains(inputs, v));
assert(contains(input_map, v));
input_map.erase(v);
inputs.erase(v);
}
static
u32 highest_slot_used(const vector<gough_ins> &program) {
u32 rv = INVALID_SLOT;
for (const gough_ins &ins : program) {
if (rv == INVALID_SLOT) {
rv = ins.dest;
} else if (ins.dest != INVALID_SLOT) {
ENSURE_AT_LEAST(&rv, ins.dest);
}
if (rv == INVALID_SLOT) {
rv = ins.src;
} else if (ins.src != INVALID_SLOT) {
ENSURE_AT_LEAST(&rv, ins.src);
}
}
assert(rv != INVALID_SLOT);
return rv;
}
static
u32 highest_slot_used(const map<gough_edge_id, vector<gough_ins> > &blocks) {
u32 rv = INVALID_SLOT;
for (const vector<gough_ins> &ins_list : blocks | map_values) {
u32 used = highest_slot_used(ins_list);
if (rv == INVALID_SLOT) {
rv = used;
} else if (used != INVALID_SLOT) {
ENSURE_AT_LEAST(&rv, used);
}
}
return rv;
}
static
void add_to_block(const vector<shared_ptr<GoughSSAVar> > &vars,
vector<gough_ins> *out) {
for (const auto &var : vars) {
var->generate(out);
}
}
namespace {
struct edge_join_info {
bool empty() const { return dest_to_src.empty(); }
void insert(u32 src, u32 dest) {
assert(!contains(dest_to_src, dest));
assert(src != dest);
dest_to_src[dest] = src;
src_to_dest[src].insert(dest);
}
void erase(u32 src, u32 dest) {
assert(dest_to_src.at(dest) == src);
dest_to_src.erase(dest);
src_to_dest[src].erase(dest);
if (src_to_dest[src].empty()) {
src_to_dest.erase(src);
}
}
bool is_src(u32 v) const {
bool rv = contains(src_to_dest, v);
assert(!rv || !src_to_dest.at(v).empty());
return rv;
}
bool is_dest(u32 v) const {
return contains(dest_to_src, v);
}
void remap_src(u32 old_src, u32 new_src) {
assert(is_src(old_src));
assert(!is_src(new_src));
for (const u32 &e : src_to_dest[old_src]) {
assert(e != new_src);
dest_to_src[e] = new_src;
}
src_to_dest[new_src].swap(src_to_dest[old_src]);
src_to_dest.erase(old_src);
assert(!is_src(old_src));
assert(is_src(new_src));
}
/* returns an arbitrary unresolved entry */
void get_pending(u32 *src, u32 *dest) {
assert(!empty());
*dest = dest_to_src.begin()->first;
*src = dest_to_src.begin()->second;
}
const map<u32, u32> &get_dest_mapping() const { return dest_to_src; }
private:
map<u32, set<u32> > src_to_dest;
map<u32, u32> dest_to_src;
};
}
static
void prep_joins_for_generation(const GoughGraph &g, GoughVertex v,
map<GoughEdge, edge_join_info> *edge_info) {
DEBUG_PRINTF("writing out joins for %u\n", g[v].state_id);
for (const auto &var : g[v].vars) {
u32 dest_slot = var->slot;
for (const auto &var_edges : var->get_input_map()) {
u32 input = var_edges.first->slot;
if (dest_slot == input) {
continue;
}
for (const GoughEdge &incoming_edge : var_edges.second) {
(*edge_info)[incoming_edge].insert(input, dest_slot);
DEBUG_PRINTF("need %u<-%u\n", dest_slot, input);
}
}
}
}
static
void add_simple_joins(edge_join_info &eji, vector<gough_ins> *out) {
/* any slot whose value we don't need can be written to immediately */
const map<u32, u32> &dest_to_src = eji.get_dest_mapping();
bool changed;
do {
changed = false;
for (map<u32, u32>::const_iterator it = dest_to_src.begin();
it != dest_to_src.end();) {
u32 src = it->second;
u32 dest = it->first;
++it; /* avoid iterator being invalidated */
if (eji.is_src(dest)) {
continue; /* conflict; not simple (yet) */
}
/* value of destination slot is not used by any remaining joins;
* we can output this join immediately */
DEBUG_PRINTF("out %u<-%u\n", dest, src);
out->push_back(make_gough_ins(GOUGH_INS_MOV, dest, src));
eji.erase(src, dest);
if (eji.is_dest(src) && eji.is_src(src)) {
/* we can unblock src being used as an output by shifting
* across everybody using src as input to using dest (as == src
* now) */
eji.remap_src(src, dest);
}
changed = true;
}
} while (changed);
}
static
void add_joins_to_block(edge_join_info &eji, vector<gough_ins> *out,
u32 base_temp_slot) {
/* joins happen concurrently: none of them should see the outputs of another
* join happening due to the same entry of the vertex. If there are
* conflicts we may have to handle things by using a temp output slot for
* each join and then copying into the final slot.
*/
add_simple_joins(eji, out);
while (!eji.empty()) {
u32 split;
u32 input_for_split;
eji.get_pending(&input_for_split, &split);
assert(eji.is_src(split)); /* otherwise should be handled by simple */
/* stash the initial value of the split register in a temp register */
u32 temp = base_temp_slot++;
DEBUG_PRINTF("out %u<-%u\n", temp, split);
out->push_back(make_gough_ins(GOUGH_INS_MOV, temp, split));
eji.remap_src(split, temp); /* update maps */
/* split can now be safely written out to as all the uses of it as an
* input now refer to temp instead */
DEBUG_PRINTF("out %u<-%u\n", split, input_for_split);
out->push_back(make_gough_ins(GOUGH_INS_MOV, split, input_for_split));
eji.erase(input_for_split, split);
/* handle any uncovered simple cases */
add_simple_joins(eji, out);
}
}
static
void build_blocks(const GoughGraph &g,
map<gough_edge_id, vector<gough_ins> > *blocks,
u32 base_temp_slot) {
for (const auto &e : edges_range(g)) {
if (g[e].vars.empty()) {
continue;
}
vector<gough_ins> &block = (*blocks)[gough_edge_id(g, e)];
add_to_block(g[e].vars, &block);
assert(!block.empty());
}
for (const auto t : vertices_range(g)) {
if (g[t].vars.empty()) {
continue;
}
map<GoughEdge, edge_join_info> eji;
prep_joins_for_generation(g, t, &eji);
for (auto &m : eji) {
vector<gough_ins> &block = (*blocks)[gough_edge_id(g, m.first)];
u32 cur_base = base_temp_slot;
if (!block.empty()) {
/* some temp slots may already be in use by short-lived vars */
ENSURE_AT_LEAST(&cur_base, highest_slot_used(block) + 1);
}
add_joins_to_block(m.second, &block, cur_base);
if (block.empty()) {
blocks->erase(gough_edge_id(g, m.first));
}
}
}
for (vector<gough_ins> &ins_list : *blocks | map_values) {
assert(!ins_list.empty());
ins_list.push_back(make_gough_ins(GOUGH_INS_END));
}
}
static
void copy_in_blocks(raw_som_dfa &raw, u8 alphaShift, const GoughGraph &cfg,
const map<gough_edge_id, vector<gough_ins> > &blocks,
u32 *edge_blocks, u32 *top_blocks, u32 base_offset,
map<vector<gough_ins>, u32> *prog_offsets,
vector<gough_ins> *out) {
u32 impl_alpha_size = 1U << alphaShift;
UNUSED u32 top_sym = raw.alpha_remap[TOP];
assert(top_sym == raw.alpha_size - 1U);
map<vector<gough_ins>, u32> &processed = *prog_offsets;
for (const auto &e : edges_range(cfg)) {
if (!contains(blocks, gough_edge_id(cfg, e))) {
continue;
}
const vector<gough_ins> &block = blocks.at(gough_edge_id(cfg, e));
u32 prog_offset;
if (!contains(processed, block)) {
prog_offset = base_offset + byte_length(*out);
insert(out, out->end(), block);
processed[block] = prog_offset;
} else {
prog_offset = processed[block];
}
/* update edges */
u32 s_id = cfg[source(e, cfg)].state_id;
UNUSED u32 t_id = cfg[target(e, cfg)].state_id;
u32 impl_src_id = raw.states[s_id].impl_id;
DEBUG_PRINTF("%u: writing out block for edge_%u_%u at %u:\n",
impl_src_id, s_id, t_id,prog_offset);
for (u32 j = cfg[e].reach.find_first(); j != CharReach::npos;
j = cfg[e].reach.find_next(j)) {
assert(raw.states[s_id].next[j] == t_id);
u32 edge_index = impl_src_id * impl_alpha_size + j;
DEBUG_PRINTF("\tsetting on %u, %u\n", j, edge_index);
edge_blocks[edge_index] = prog_offset;
}
if (cfg[e].top) {
assert(raw.states[s_id].next[top_sym] == t_id);
DEBUG_PRINTF("\tsetting top on %u to block at %u\n", impl_src_id,
prog_offset);
top_blocks[impl_src_id] = prog_offset;
}
}
}
bool find_normal_self_loop(GoughVertex v, const GoughGraph &g, GoughEdge *out) {
for (const auto &e : out_edges_range(v, g)) {
if (target(e, g) != v) {
continue;
}
if (g[e].top) {
assert(g[e].reach.find_first() == CharReach::npos);
continue; /* corresponds to a top, not a normal transition */
}
*out = e;
return true;
}
return false;
}
static never_inline
void update_accel_prog_offset(const gough_build_strat &gbs,
const map<gough_edge_id, vector<gough_ins> > &blocks,
const map<vector<gough_ins>, u32> &prog_offsets) {
map<dstate_id_t, GoughVertex> verts;
for (auto v : vertices_range(gbs.gg)) {
verts[gbs.gg[v].state_id] = v;
}
for (auto &m : gbs.built_accel) {
gough_accel *ga = m.first;
assert(!ga->prog_offset);
GoughVertex v = verts[m.second];
GoughEdge e;
UNUSED bool rv = find_normal_self_loop(v, gbs.gg, &e);
assert(rv);
if (!rv) {
continue;
}
DEBUG_PRINTF("updating state %u accel with margin %hhu\n",
gbs.gg[v].state_id, ga->margin_dist);
if (contains(blocks, gough_edge_id(gbs.gg, e))) {
const vector<gough_ins> &block
= blocks.at(gough_edge_id(gbs.gg, e));
ga->prog_offset = prog_offsets.at(block);
DEBUG_PRINTF("prog offset %u\n", ga->prog_offset);
} else {
ga->margin_dist = 0;
DEBUG_PRINTF("removing margin as no som\n");
}
}
}
bytecode_ptr<NFA> goughCompile(raw_som_dfa &raw, u8 somPrecision,
const CompileContext &cc,
const ReportManager &rm) {
assert(somPrecision == 2 || somPrecision == 4 || somPrecision == 8
|| !cc.streaming);
if (!cc.grey.allowGough) {
return nullptr;
}
DEBUG_PRINTF("hello world\n");
unique_ptr<GoughGraph> cfg = makeCFG(raw);
dump(*cfg, "init", cc.grey);
copy_propagation(*cfg, cc.grey);
remove_dead(*cfg);
dump(*cfg, "prop", cc.grey);
u32 slot_count = assign_slots(*cfg, cc.grey);
dump(*cfg, "slots", cc.grey);
map<gough_edge_id, vector<gough_ins> > blocks;
build_blocks(*cfg, &blocks, slot_count);
DEBUG_PRINTF("%u slots\n", highest_slot_used(blocks) + 1);
u32 scratch_slot_count = highest_slot_used(blocks) + 1;
assert(slot_count <= scratch_slot_count);
dump(*cfg, "final", cc.grey);
dump_blocks(blocks, "final", cc.grey);
gough_info gi;
memset(&gi, 0, sizeof(gi));
map<dstate_id_t, gough_accel_state_info> accel_allowed;
find_allowed_accel_states(*cfg, blocks, &accel_allowed);
gough_build_strat gbs(raw, *cfg, rm, accel_allowed);
auto basic_dfa = mcclellanCompile_i(raw, gbs, cc);
assert(basic_dfa);
if (!basic_dfa) {
return nullptr;
}
u8 alphaShift
= ((const mcclellan *)getImplNfa(basic_dfa.get()))->alphaShift;
u32 edge_count = (1U << alphaShift) * raw.states.size();
u32 curr_offset = ROUNDUP_N(basic_dfa->length, 4);
u32 haig_offset = curr_offset;
curr_offset += sizeof(gi);
/* reserve space for edge->program mapping */
u32 edge_prog_offset = curr_offset;
curr_offset += sizeof(u32) * edge_count;
vector<u32> edge_blocks(edge_count);
u32 top_prog_offset = 0;
if (is_triggered(raw.kind)) {
/* reserve space for edge->program mapping */
top_prog_offset = curr_offset;
curr_offset += sizeof(u32) * raw.states.size();
}
gi.top_prog_offset = top_prog_offset;
vector<u32> top_blocks(raw.states.size());
/* reserve space for blocks */
u32 prog_base_offset = curr_offset;
gi.prog_base_offset = prog_base_offset;
vector<gough_ins> temp_blocks;
map<vector<gough_ins>, u32> prog_offsets;
copy_in_blocks(raw, alphaShift, *cfg, blocks, &edge_blocks[0],
&top_blocks[0], prog_base_offset, &prog_offsets,
&temp_blocks);
update_accel_prog_offset(gbs, blocks, prog_offsets);
u32 total_prog_size = byte_length(temp_blocks);
curr_offset += total_prog_size;
gi.stream_som_loc_count = slot_count;
gi.stream_som_loc_width = somPrecision;
u32 gough_size = ROUNDUP_N(curr_offset, 16);
auto gough_dfa = make_zeroed_bytecode_ptr<NFA>(gough_size);
memcpy(gough_dfa.get(), basic_dfa.get(), basic_dfa->length);
memcpy((char *)gough_dfa.get() + haig_offset, &gi, sizeof(gi));
if (gough_dfa->type == MCCLELLAN_NFA_16) {
gough_dfa->type = GOUGH_NFA_16;
} else {
assert(gough_dfa->type == MCCLELLAN_NFA_8);
gough_dfa->type = GOUGH_NFA_8;
}
/* update stream state requirements */
u32 base_state_size = gough_dfa->type == GOUGH_NFA_8 ? 1 : 2;
gough_dfa->streamStateSize = base_state_size + slot_count * somPrecision;
gough_dfa->scratchStateSize = (u32)(16 + scratch_slot_count * sizeof(u64a));
mcclellan *m = (mcclellan *)getMutableImplNfa(gough_dfa.get());
m->haig_offset = haig_offset;
/* update nfa length, haig_info offset (leave mcclellan length alone) */
gough_dfa->length = gough_size;
/* copy in blocks */
copy_bytes((u8 *)gough_dfa.get() + edge_prog_offset, edge_blocks);
if (top_prog_offset) {
copy_bytes((u8 *)gough_dfa.get() + top_prog_offset, top_blocks);
}
copy_bytes((u8 *)gough_dfa.get() + prog_base_offset, temp_blocks);
return gough_dfa;
}
AccelScheme gough_build_strat::find_escape_strings(dstate_id_t this_idx) const {
AccelScheme rv;
if (!contains(accel_gough_info, this_idx)) {
rv.cr = CharReach::dot();
rv.double_byte.clear();
return rv;
}
rv = mcclellan_build_strat::find_escape_strings(this_idx);
assert(!rv.offset || rv.cr.all()); /* should have been limited by strat */
if (rv.offset) {
rv.cr = CharReach::dot();
rv.double_byte.clear();
return rv;
}
if (rv.double_offset
|| !accel_gough_info.at(this_idx).two_byte) {
rv.double_byte.clear();
}
return rv;
}
void gough_build_strat::buildAccel(dstate_id_t this_idx, const AccelScheme &info,
void *accel_out) {
assert(mcclellan_build_strat::accelSize() == sizeof(AccelAux));
gough_accel *accel = (gough_accel *)accel_out;
/* build a plain accelaux so we can work out where we can get to */
mcclellan_build_strat::buildAccel(this_idx, info, &accel->accel);
DEBUG_PRINTF("state %hu is accel with type %hhu\n", this_idx,
accel->accel.accel_type);
if (accel->accel.accel_type == ACCEL_NONE) {
return;
}
assert(!accel->accel.generic.offset);
assert(contains(accel_gough_info, this_idx));
accel->margin_dist = verify_u8(accel_gough_info.at(this_idx).margin);
built_accel[accel] = this_idx;
DEBUG_PRINTF("state %hu is accel with margin %hhu\n", this_idx,
accel->margin_dist);
}
namespace {
struct raw_gough_report_list {
set<som_report> reports;
raw_gough_report_list(
const vector<pair<ReportID, GoughSSAVar *>> &raw_reports,
const ReportManager &rm, bool do_remap) {
for (const auto &m : raw_reports) {
ReportID r = do_remap ? rm.getProgramOffset(m.first) : m.first;
u32 impl_slot = INVALID_SLOT;
if (m.second) {
impl_slot = m.second->slot;
assert(impl_slot != INVALID_SLOT);
}
reports.emplace(r, impl_slot);
}
}
bool operator<(const raw_gough_report_list &b) const {
return reports < b.reports;
}
};
struct raw_gough_report_info_impl : public raw_report_info {
vector<raw_gough_report_list> rl;
u32 getReportListSize() const override;
size_t size() const override;
void fillReportLists(NFA *n, size_t base_offset,
vector<u32> &ro /* out */) const override;
};
}
unique_ptr<raw_report_info> gough_build_strat::gatherReports(
vector<u32> &reports,
vector<u32> &reports_eod,
u8 *isSingleReport,
ReportID *arbReport) const {
DEBUG_PRINTF("gathering reports\n");
const bool remap_reports = has_managed_reports(rdfa.kind);
auto ri = ue2::make_unique<raw_gough_report_info_impl>();
map<raw_gough_report_list, u32> rev;
assert(!rdfa.states.empty());
vector<GoughVertex> verts(rdfa.states.size());
for (auto v : vertices_range(gg)) {
verts[gg[v].state_id] = v;
}
for (u32 state_id = 0; state_id < verts.size(); state_id++) {
assert(state_id < rdfa.states.size());
GoughVertex v = verts[state_id];
assert(v != GoughGraph::null_vertex() || !state_id);
DEBUG_PRINTF("i = %zu [%zu]\n", reports.size(), gg[v].reports.size());
if (v == GoughGraph::null_vertex() || gg[v].reports.empty()) {
reports.push_back(MO_INVALID_IDX);
continue;
}
raw_gough_report_list rrl(gg[v].reports, rm, remap_reports);
DEBUG_PRINTF("non empty r %zu\n", reports.size());
if (rev.find(rrl) != rev.end()) {
reports.push_back(rev[rrl]);
} else {
DEBUG_PRINTF("adding to rl\n");
rev[rrl] = ri->size();
reports.push_back(ri->size());
ri->rl.push_back(rrl);
}
}
for (auto v : verts) {
if (v == GoughGraph::null_vertex() || gg[v].reports_eod.empty()) {
reports_eod.push_back(MO_INVALID_IDX);
continue;
}
DEBUG_PRINTF("non empty r eod\n");
raw_gough_report_list rrl(gg[v].reports_eod, rm, remap_reports);
if (rev.find(rrl) != rev.end()) {
reports_eod.push_back(rev[rrl]);
continue;
}
DEBUG_PRINTF("adding to rl eod %zu\n", gg[v].reports_eod.size());
rev[rrl] = ri->size();
reports_eod.push_back(ri->size());
ri->rl.push_back(rrl);
}
/* TODO: support single report in gough */
*isSingleReport = 0;
*arbReport = MO_INVALID_IDX;
assert(!ri->rl.empty()); /* all components should be able to generate
reports */
return move(ri);
}
u32 raw_gough_report_info_impl::getReportListSize() const {
u32 sz = 0;
for (const raw_gough_report_list &r : rl) {
sz += sizeof(gough_report_list);
sz += sizeof(gough_report) * r.reports.size();
}
return sz;
}
size_t raw_gough_report_info_impl::size() const {
return rl.size();
}
void raw_gough_report_info_impl::fillReportLists(NFA *n, size_t base_offset,
vector<u32> &ro) const {
for (const raw_gough_report_list &r : rl) {
ro.push_back(base_offset);
gough_report_list *p = (gough_report_list *)((char *)n + base_offset);
u32 i = 0;
for (const som_report &sr : r.reports) {
p->report[i].r = sr.report;
p->report[i].som = sr.slot;
i++;
}
p->count = verify_u32(r.reports.size());
base_offset += sizeof(gough_report_list);
base_offset += sizeof(gough_report) * r.reports.size();
}
}
} // namespace ue2
|