1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief Castle: multi-tenant repeat engine, compiler code.
*/
#include "castlecompile.h"
#include "castle_internal.h"
#include "limex_limits.h"
#include "nfa_internal.h"
#include "repeatcompile.h"
#include "shufticompile.h"
#include "trufflecompile.h"
#include "nfagraph/ng_dump.h"
#include "nfagraph/ng_equivalence.h"
#include "nfagraph/ng_repeat.h"
#include "nfagraph/ng_redundancy.h"
#include "nfagraph/ng_util.h"
#include "util/alloc.h"
#include "util/compile_context.h"
#include "util/container.h"
#include "util/dump_charclass.h"
#include "util/flat_containers.h"
#include "util/graph.h"
#include "util/make_unique.h"
#include "util/multibit_build.h"
#include "util/report_manager.h"
#include "util/verify_types.h"
#include "grey.h"
#include <stack>
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_keys;
using boost::adaptors::map_values;
namespace ue2 {
#define CLIQUE_GRAPH_MAX_SIZE 1000
static
u32 depth_to_u32(const depth &d) {
assert(d.is_reachable());
if (d.is_infinite()) {
return REPEAT_INF;
}
u32 d_val = d;
assert(d_val < REPEAT_INF);
return d_val;
}
static
void writeCastleScanEngine(const CharReach &cr, Castle *c) {
if (cr.all()) {
c->type = CASTLE_DOT;
return;
}
if (cr.count() == 1) {
c->type = CASTLE_NVERM;
c->u.verm.c = cr.find_first();
return;
}
const CharReach negated(~cr);
if (negated.count() == 1) {
c->type = CASTLE_VERM;
c->u.verm.c = negated.find_first();
return;
}
if (shuftiBuildMasks(negated, (u8 *)&c->u.shuf.mask_lo,
(u8 *)&c->u.shuf.mask_hi) != -1) {
c->type = CASTLE_SHUFTI;
return;
}
c->type = CASTLE_TRUFFLE;
truffleBuildMasks(negated, (u8 *)(u8 *)&c->u.truffle.mask1,
(u8 *)&c->u.truffle.mask2);
}
static
bool literalOverlap(const vector<CharReach> &a, const vector<CharReach> &b,
const size_t dist) {
for (size_t i = 0; i < b.size(); i++) {
if (i > dist) {
return true;
}
size_t overlap_len = b.size() - i;
if (overlap_len <= a.size()) {
if (matches(a.end() - overlap_len, a.end(), b.begin(),
b.end() - i)) {
return false;
}
} else {
assert(overlap_len > a.size());
if (matches(a.begin(), a.end(), b.end() - i - a.size(),
b.end() - i)) {
return false;
}
}
}
return b.size() > dist;
}
struct CliqueVertexProps {
CliqueVertexProps() {}
explicit CliqueVertexProps(u32 state_in) : stateId(state_in) {}
u32 stateId = ~0U;
};
typedef boost::adjacency_list<boost::listS, boost::listS, boost::undirectedS,
CliqueVertexProps> CliqueGraph;
typedef CliqueGraph::vertex_descriptor CliqueVertex;
static
void getNeighborInfo(const CliqueGraph &g, vector<u32> &neighbor,
const CliqueVertex &cv, const set<u32> &group) {
u32 id = g[cv].stateId;
// find neighbors for cv
for (const auto &v : adjacent_vertices_range(cv, g)) {
if (g[v].stateId != id && contains(group, g[v].stateId)) {
neighbor.push_back(g[v].stateId);
DEBUG_PRINTF("Neighbor:%u\n", g[v].stateId);
}
}
}
static
void findCliqueGroup(CliqueGraph &cg, vector<u32> &clique) {
stack<vector<u32>> gStack;
// Create mapping between vertex and id
map<u32, CliqueVertex> vertexMap;
vector<u32> init;
for (const auto &v : vertices_range(cg)) {
vertexMap[cg[v].stateId] = v;
init.push_back(cg[v].stateId);
}
gStack.push(init);
// Get the vertex to start from
CliqueGraph::vertex_iterator vi, ve;
tie(vi, ve) = vertices(cg);
while (!gStack.empty()) {
vector<u32> g = gStack.top();
gStack.pop();
// Choose a vertex from the graph
u32 id = g[0];
const CliqueVertex &n = vertexMap.at(id);
clique.push_back(id);
// Corresponding vertex in the original graph
vector<u32> neighbor;
set<u32> subgraphId(g.begin(), g.end());
getNeighborInfo(cg, neighbor, n, subgraphId);
// Get graph consisting of neighbors for left branch
if (!neighbor.empty()) {
gStack.push(neighbor);
}
}
}
template<typename Graph>
bool graph_empty(const Graph &g) {
typename Graph::vertex_iterator vi, ve;
tie(vi, ve) = vertices(g);
return vi == ve;
}
static
vector<u32> removeClique(CliqueGraph &cg) {
vector<vector<u32>> cliquesVec(1);
DEBUG_PRINTF("graph size:%zu\n", num_vertices(cg));
findCliqueGroup(cg, cliquesVec[0]);
while (!graph_empty(cg)) {
const vector<u32> &c = cliquesVec.back();
vector<CliqueVertex> dead;
for (const auto &v : vertices_range(cg)) {
if (find(c.begin(), c.end(), cg[v].stateId) != c.end()) {
dead.push_back(v);
}
}
for (const auto &v : dead) {
clear_vertex(v, cg);
remove_vertex(v, cg);
}
if (graph_empty(cg)) {
break;
}
vector<u32> clique;
findCliqueGroup(cg, clique);
cliquesVec.push_back(clique);
}
// get the independent set with max size
size_t max = 0;
size_t id = 0;
for (size_t j = 0; j < cliquesVec.size(); ++j) {
if (cliquesVec[j].size() > max) {
max = cliquesVec[j].size();
id = j;
}
}
DEBUG_PRINTF("clique size:%zu\n", cliquesVec[id].size());
return cliquesVec[id];
}
// if the location of any reset character in one literal are after
// the end locations where it overlaps with other literals,
// then the literals are mutual exclusive
static
bool findExclusivePair(const size_t id1, const size_t id2,
const size_t lower,
const vector<vector<size_t>> &min_reset_dist,
const vector<vector<vector<CharReach>>> &triggers) {
const auto &triggers1 = triggers[id1];
const auto &triggers2 = triggers[id2];
for (size_t i = 0; i < triggers1.size(); ++i) {
for (size_t j = 0; j < triggers2.size(); ++j) {
if (!literalOverlap(triggers1[i], triggers2[j],
min_reset_dist[id2 - lower][j]) ||
!literalOverlap(triggers2[j], triggers1[i],
min_reset_dist[id1 - lower][i])) {
return false;
}
}
}
return true;
}
static
vector<vector<u32>> checkExclusion(u32 &streamStateSize,
const CharReach &cr,
const vector<vector<vector<CharReach>>> &triggers,
enum ExclusiveType &exclusive,
const size_t numRepeats) {
vector<vector<u32>> groups;
size_t trigSize = triggers.size();
DEBUG_PRINTF("trigSize %zu\n", trigSize);
size_t lower = 0;
size_t total = 0;
while (lower < trigSize) {
vector<CliqueVertex> vertices;
unique_ptr<CliqueGraph> cg = std::make_unique<CliqueGraph>();
vector<vector<size_t>> min_reset_dist;
size_t upper = min(lower + CLIQUE_GRAPH_MAX_SIZE, trigSize);
// get min reset distance for each repeat
for (size_t i = lower; i < upper; i++) {
CliqueVertex v = add_vertex(CliqueVertexProps(i), *cg);
vertices.push_back(v);
const vector<size_t> &tmp_dist =
minResetDistToEnd(triggers[i], cr);
min_reset_dist.push_back(tmp_dist);
}
// find exclusive pair for each repeat
for (size_t i = lower; i < upper; i++) {
CliqueVertex s = vertices[i - lower];
for (size_t j = i + 1; j < upper; j++) {
if (findExclusivePair(i, j, lower, min_reset_dist,
triggers)) {
CliqueVertex d = vertices[j - lower];
add_edge(s, d, *cg);
}
}
}
// find the largest exclusive group
auto clique = removeClique(*cg);
size_t cliqueSize = clique.size();
if (cliqueSize > 1) {
groups.push_back(clique);
exclusive = EXCLUSIVE;
total += cliqueSize;
}
lower += CLIQUE_GRAPH_MAX_SIZE;
}
DEBUG_PRINTF("clique size %zu, num of repeats %zu\n",
total, numRepeats);
if (total == numRepeats) {
exclusive = PURE_EXCLUSIVE;
streamStateSize = 0;
};
return groups;
}
namespace {
struct ExclusiveInfo {
/** Mapping between top and exclusive group id */
map<u32, u32> groupId;
/** Number of exclusive groups */
u32 numGroups = 0;
};
}
static
void buildSubcastles(const CastleProto &proto, vector<SubCastle> &subs,
vector<RepeatInfo> &infos, vector<u64a> &patchSize,
const vector<pair<depth, bool>> &repeatInfoPair,
u32 &scratchStateSize, u32 &streamStateSize,
u32 &tableSize, vector<u64a> &tables, u32 &sparseRepeats,
const ExclusiveInfo &exclusiveInfo,
vector<u32> &may_stale, const ReportManager &rm) {
const bool remap_reports = has_managed_reports(proto.kind);
u32 i = 0;
const auto &groupId = exclusiveInfo.groupId;
const auto &numGroups = exclusiveInfo.numGroups;
vector<u32> maxStreamSize(numGroups, 0);
for (auto it = proto.repeats.begin(), ite = proto.repeats.end();
it != ite; ++it, ++i) {
const PureRepeat &pr = it->second;
depth min_period = repeatInfoPair[i].first;
bool is_reset = repeatInfoPair[i].second;
enum RepeatType rtype = chooseRepeatType(pr.bounds.min, pr.bounds.max,
min_period, is_reset, true);
RepeatStateInfo rsi(rtype, pr.bounds.min, pr.bounds.max, min_period);
DEBUG_PRINTF("sub %u: selected %s model for %s repeat\n", i,
repeatTypeName(rtype), pr.bounds.str().c_str());
SubCastle &sub = subs[i];
RepeatInfo &info = infos[i];
info.packedCtrlSize = rsi.packedCtrlSize;
u32 subStreamStateSize = verify_u32(rsi.packedCtrlSize + rsi.stateSize);
// Handle stream/scratch space alloc for exclusive case differently.
if (contains(groupId, i)) {
u32 id = groupId.at(i);
maxStreamSize[id] = max(maxStreamSize[id], subStreamStateSize);
// SubCastle full/stream state offsets are written in for the group
// below.
} else {
sub.fullStateOffset = scratchStateSize;
sub.streamStateOffset = streamStateSize;
scratchStateSize += verify_u32(sizeof(RepeatControl));
streamStateSize += subStreamStateSize;
}
if (pr.bounds.max.is_finite()) {
may_stale.push_back(i);
}
info.type = verify_u8(rtype);
info.repeatMin = depth_to_u32(pr.bounds.min);
info.repeatMax = depth_to_u32(pr.bounds.max);
info.stateSize = rsi.stateSize;
info.horizon = rsi.horizon;
info.minPeriod = min_period.is_finite() ? (u32)min_period : ~0U;
assert(rsi.packedFieldSizes.size()
<= ARRAY_LENGTH(info.packedFieldSizes));
copy(rsi.packedFieldSizes.begin(), rsi.packedFieldSizes.end(),
info.packedFieldSizes);
info.patchCount = rsi.patchCount;
info.patchSize = rsi.patchSize;
info.encodingSize = rsi.encodingSize;
info.patchesOffset = rsi.patchesOffset;
assert(pr.reports.size() == 1);
ReportID id = *pr.reports.begin();
sub.report = remap_reports ? rm.getProgramOffset(id) : id;
if (rtype == REPEAT_SPARSE_OPTIMAL_P) {
for (u32 j = 0; j < rsi.patchSize; j++) {
tables.push_back(rsi.table[j]);
}
sparseRepeats++;
patchSize[i] = rsi.patchSize;
tableSize += rsi.patchSize;
}
}
vector<u32> scratchOffset(numGroups, 0);
vector<u32> streamOffset(numGroups, 0);
for (const auto &j : groupId) {
u32 top = j.first;
u32 id = j.second;
SubCastle &sub = subs[top];
if (!scratchOffset[id]) {
sub.fullStateOffset = scratchStateSize;
sub.streamStateOffset = streamStateSize;
scratchOffset[id] = scratchStateSize;
streamOffset[id] = streamStateSize;
scratchStateSize += verify_u32(sizeof(RepeatControl));
streamStateSize += maxStreamSize[id];
} else {
sub.fullStateOffset = scratchOffset[id];
sub.streamStateOffset = streamOffset[id];
}
}
}
bytecode_ptr<NFA>
buildCastle(const CastleProto &proto,
const map<u32, vector<vector<CharReach>>> &triggers,
const CompileContext &cc, const ReportManager &rm) {
assert(cc.grey.allowCastle);
const size_t numRepeats = proto.repeats.size();
assert(numRepeats > 0 && numRepeats <= proto.max_occupancy);
const CharReach &cr = proto.reach();
DEBUG_PRINTF("reach %s, %zu repeats\n", describeClass(cr).c_str(),
numRepeats);
vector<SubCastle> subs(numRepeats);
memset(&subs[0], 0, sizeof(SubCastle) * numRepeats);
vector<RepeatInfo> infos(numRepeats);
memset(&infos[0], 0, sizeof(RepeatInfo) * numRepeats);
vector<u64a> patchSize(numRepeats);
memset(&patchSize[0], 0, sizeof(u64a) * numRepeats);
vector<u64a> tables;
// We start with enough stream state to store the active bitfield.
u32 streamStateSize = mmbit_size(numRepeats);
// We have a copy of the stream state in scratch for castleMatchLoop.
u32 scratchStateSize = ROUNDUP_N(streamStateSize, alignof(RepeatControl));
depth minWidth(depth::infinity());
depth maxWidth(0);
u32 i = 0;
ExclusiveInfo exclusiveInfo;
vector<vector<vector<CharReach>>> candidateTriggers;
vector<u32> candidateRepeats;
vector<pair<depth, bool>> repeatInfoPair;
for (auto it = proto.repeats.begin(), ite = proto.repeats.end();
it != ite; ++it, ++i) {
const u32 top = it->first;
const PureRepeat &pr = it->second;
assert(pr.reach == cr);
assert(pr.reports.size() == 1);
if (top != i) {
// Tops have not been remapped?
assert(0);
throw std::logic_error("Tops not remapped");
}
minWidth = min(minWidth, pr.bounds.min);
maxWidth = max(maxWidth, pr.bounds.max);
bool is_reset = false;
depth min_period = depth::infinity();
// If we've got a top in the castle without any trigger information, it
// possibly means that we've got a repeat that we can't trigger. We do
// need to cope with it though.
if (contains(triggers, top)) {
min_period = depth(minPeriod(triggers.at(top), cr, &is_reset));
}
if (min_period > pr.bounds.max) {
DEBUG_PRINTF("trigger is longer than repeat; only need one offset\n");
is_reset = true;
}
repeatInfoPair.push_back(make_pair(min_period, is_reset));
candidateTriggers.push_back(triggers.at(top));
candidateRepeats.push_back(i);
}
// Case 1: exclusive repeats
enum ExclusiveType exclusive = NOT_EXCLUSIVE;
u32 activeIdxSize = 0;
u32 groupIterOffset = 0;
if (cc.grey.castleExclusive) {
auto cliqueGroups =
checkExclusion(streamStateSize, cr, candidateTriggers,
exclusive, numRepeats);
for (const auto &group : cliqueGroups) {
// mutual exclusive repeats group found,
// update state sizes
activeIdxSize = calcPackedBytes(numRepeats + 1);
streamStateSize += activeIdxSize;
// replace with top values
for (const auto &val : group) {
const u32 top = candidateRepeats[val];
exclusiveInfo.groupId[top] = exclusiveInfo.numGroups;
}
exclusiveInfo.numGroups++;
}
if (exclusive) {
groupIterOffset = streamStateSize;
streamStateSize += mmbit_size(exclusiveInfo.numGroups);
}
DEBUG_PRINTF("num of groups:%u\n", exclusiveInfo.numGroups);
}
candidateRepeats.clear();
DEBUG_PRINTF("reach %s exclusive %u\n", describeClass(cr).c_str(),
exclusive);
u32 tableSize = 0;
u32 sparseRepeats = 0;
vector<u32> may_stale; /* sub castles that may go stale */
buildSubcastles(proto, subs, infos, patchSize, repeatInfoPair,
scratchStateSize, streamStateSize, tableSize,
tables, sparseRepeats, exclusiveInfo, may_stale, rm);
DEBUG_PRINTF("%zu subcastles may go stale\n", may_stale.size());
vector<mmbit_sparse_iter> stale_iter;
if (!may_stale.empty()) {
stale_iter = mmbBuildSparseIterator(may_stale, numRepeats);
}
size_t total_size =
sizeof(NFA) + // initial NFA structure
sizeof(Castle) + // Castle structure
sizeof(SubCastle) * subs.size() + // SubCastles themselves
sizeof(RepeatInfo) * subs.size() + // RepeatInfo structure
sizeof(u64a) * tableSize + // table size for
// REPEAT_SPARSE_OPTIMAL_P
sizeof(u64a) * sparseRepeats; // paddings for
// REPEAT_SPARSE_OPTIMAL_P tables
total_size = ROUNDUP_N(total_size, alignof(mmbit_sparse_iter));
total_size += byte_length(stale_iter); // stale sparse iter
auto nfa = make_zeroed_bytecode_ptr<NFA>(total_size);
nfa->type = verify_u8(CASTLE_NFA);
nfa->length = verify_u32(total_size);
nfa->nPositions = verify_u32(subs.size());
nfa->streamStateSize = streamStateSize;
nfa->scratchStateSize = scratchStateSize;
nfa->minWidth = verify_u32(minWidth);
nfa->maxWidth = maxWidth.is_finite() ? verify_u32(maxWidth) : 0;
char * const base_ptr = (char *)nfa.get() + sizeof(NFA);
char *ptr = base_ptr;
Castle *c = (Castle *)ptr;
c->numRepeats = verify_u32(subs.size());
c->numGroups = exclusiveInfo.numGroups;
c->exclusive = verify_s8(exclusive);
c->activeIdxSize = verify_u8(activeIdxSize);
c->activeOffset = verify_u32(c->numGroups * activeIdxSize);
c->groupIterOffset = groupIterOffset;
writeCastleScanEngine(cr, c);
ptr += sizeof(Castle);
SubCastle *subCastles = ((SubCastle *)(ROUNDUP_PTR(ptr, alignof(u32))));
copy(subs.begin(), subs.end(), subCastles);
u32 length = 0;
u32 tableIdx = 0;
for (i = 0; i < numRepeats; i++) {
u32 offset = sizeof(SubCastle) * (numRepeats - i) + length;
SubCastle *sub = &subCastles[i];
sub->repeatInfoOffset = offset;
ptr = (char *)sub + offset;
memcpy(ptr, &infos[i], sizeof(RepeatInfo));
if (patchSize[i]) {
RepeatInfo *info = (RepeatInfo *)ptr;
u64a *table = ((u64a *)(ROUNDUP_PTR(((char *)(info) +
sizeof(*info)), alignof(u64a))));
copy(tables.begin() + tableIdx,
tables.begin() + tableIdx + patchSize[i], table);
u32 diff = (char *)table - (char *)info +
sizeof(u64a) * patchSize[i];
info->length = diff;
length += diff;
tableIdx += patchSize[i];
} else {
length += sizeof(RepeatInfo);
}
// set exclusive group info
if (contains(exclusiveInfo.groupId, i)) {
sub->exclusiveId = exclusiveInfo.groupId[i];
} else {
sub->exclusiveId = numRepeats;
}
}
ptr = base_ptr + total_size - sizeof(NFA) - byte_length(stale_iter);
assert(ptr + byte_length(stale_iter) == base_ptr + total_size - sizeof(NFA));
if (!stale_iter.empty()) {
c->staleIterOffset = verify_u32(ptr - base_ptr);
copy_bytes(ptr, stale_iter);
ptr += byte_length(stale_iter);
}
return nfa;
}
set<ReportID> all_reports(const CastleProto &proto) {
set<ReportID> reports;
for (const ReportID &report : proto.report_map | map_keys) {
reports.insert(report);
}
return reports;
}
depth findMinWidth(const CastleProto &proto) {
depth min_width(depth::infinity());
for (const PureRepeat &pr : proto.repeats | map_values) {
min_width = min(min_width, pr.bounds.min);
}
return min_width;
}
depth findMaxWidth(const CastleProto &proto) {
depth max_width(0);
for (const PureRepeat &pr : proto.repeats | map_values) {
max_width = max(max_width, pr.bounds.max);
}
return max_width;
}
depth findMinWidth(const CastleProto &proto, u32 top) {
if (!contains(proto.repeats, top)) {
assert(0); // should not happen
return depth::infinity();
}
return proto.repeats.at(top).bounds.min;
}
depth findMaxWidth(const CastleProto &proto, u32 top) {
if (!contains(proto.repeats, top)) {
assert(0); // should not happen
return depth(0);
}
return proto.repeats.at(top).bounds.max;
}
CastleProto::CastleProto(nfa_kind k, const PureRepeat &pr) : kind(k) {
assert(pr.reach.any());
assert(pr.reports.size() == 1);
u32 top = 0;
repeats.emplace(top, pr);
for (const auto &report : pr.reports) {
report_map[report].insert(top);
}
}
const CharReach &CastleProto::reach() const {
assert(!repeats.empty());
return repeats.begin()->second.reach;
}
u32 CastleProto::add(const PureRepeat &pr) {
assert(repeats.size() < max_occupancy);
assert(pr.reach == reach());
assert(pr.reports.size() == 1);
u32 top = next_top++;
DEBUG_PRINTF("selected unused top %u\n", top);
assert(!contains(repeats, top));
repeats.emplace(top, pr);
for (const auto &report : pr.reports) {
report_map[report].insert(top);
}
return top;
}
void CastleProto::erase(u32 top) {
DEBUG_PRINTF("erase top %u\n", top);
assert(contains(repeats, top));
repeats.erase(top);
for (auto &m : report_map) {
m.second.erase(top);
}
}
u32 CastleProto::merge(const PureRepeat &pr) {
assert(repeats.size() <= max_occupancy);
assert(pr.reach == reach());
assert(pr.reports.size() == 1);
// First, see if this repeat is already in this castle.
for (const auto &m : repeats) {
if (m.second == pr) {
DEBUG_PRINTF("repeat already present, with top %u\n", m.first);
return m.first;
}
}
if (repeats.size() == max_occupancy) {
DEBUG_PRINTF("this castle is full\n");
return max_occupancy;
}
return add(pr);
}
bool mergeCastle(CastleProto &c1, const CastleProto &c2,
map<u32, u32> &top_map) {
assert(&c1 != &c2);
assert(c1.kind == c2.kind);
DEBUG_PRINTF("c1 has %zu repeats, c2 has %zu repeats\n", c1.repeats.size(),
c2.repeats.size());
if (c1.reach() != c2.reach()) {
DEBUG_PRINTF("different reach!\n");
return false;
}
if (c1.repeats.size() + c2.repeats.size() > c1.max_occupancy) {
DEBUG_PRINTF("too many repeats to merge\n");
return false;
}
top_map.clear();
for (const auto &m : c2.repeats) {
const u32 top = m.first;
const PureRepeat &pr = m.second;
DEBUG_PRINTF("top %u\n", top);
u32 new_top = c1.merge(pr);
top_map[top] = new_top;
DEBUG_PRINTF("adding repeat: map %u->%u\n", top, new_top);
}
assert(c1.repeats.size() <= c1.max_occupancy);
return true;
}
void remapCastleTops(CastleProto &proto, map<u32, u32> &top_map) {
map<u32, PureRepeat> out;
top_map.clear();
for (const auto &m : proto.repeats) {
const u32 top = m.first;
const PureRepeat &pr = m.second;
u32 new_top = out.size();
out.emplace(new_top, pr);
top_map[top] = new_top;
}
proto.repeats.swap(out);
// Remap report map.
proto.report_map.clear();
for (const auto &m : proto.repeats) {
const u32 top = m.first;
const PureRepeat &pr = m.second;
for (const auto &report : pr.reports) {
proto.report_map[report].insert(top);
}
}
assert(proto.repeats.size() <= proto.max_occupancy);
}
namespace {
struct HasReport {
explicit HasReport(ReportID r) : report(r) {}
bool operator()(const pair<u32, PureRepeat> &a) const {
return contains(a.second.reports, report);
}
private:
ReportID report;
};
}
bool is_equal(const CastleProto &c1, ReportID report1, const CastleProto &c2,
ReportID report2) {
assert(!c1.repeats.empty());
assert(!c2.repeats.empty());
assert(c1.kind == c2.kind);
if (c1.reach() != c2.reach()) {
DEBUG_PRINTF("different reach\n");
return false;
}
map<u32, PureRepeat>::const_iterator it = c1.repeats.begin(),
ite = c1.repeats.end(),
jt = c2.repeats.begin(),
jte = c2.repeats.end();
for (;; ++it, ++jt) {
it = find_if(it, ite, HasReport(report1));
jt = find_if(jt, jte, HasReport(report2));
if (it == ite && jt == jte) {
DEBUG_PRINTF("success, cases are equivalent!\n");
return true;
}
if (it == ite || jt == jte) {
DEBUG_PRINTF("no match for one repeat\n");
break;
}
if (it->first != jt->first) {
DEBUG_PRINTF("different tops\n");
break;
}
const PureRepeat &r1 = it->second;
const PureRepeat &r2 = jt->second;
assert(r1.reach == c1.reach());
assert(r2.reach == c1.reach());
if (r1.bounds != r2.bounds) {
DEBUG_PRINTF("different bounds\n");
break;
}
}
return false;
}
bool is_equal(const CastleProto &c1, const CastleProto &c2) {
assert(!c1.repeats.empty());
assert(!c2.repeats.empty());
assert(c1.kind == c2.kind);
if (c1.reach() != c2.reach()) {
DEBUG_PRINTF("different reach\n");
return false;
}
return c1.repeats == c2.repeats;
}
bool requiresDedupe(const CastleProto &proto,
const flat_set<ReportID> &reports) {
for (const auto &report : reports) {
auto it = proto.report_map.find(report);
if (it == end(proto.report_map)) {
continue;
}
if (it->second.size() > 1) {
DEBUG_PRINTF("castle proto %p has dupe report %u\n", &proto,
report);
return true;
}
}
return false;
}
static
void addToHolder(NGHolder &g, u32 top, const PureRepeat &pr) {
DEBUG_PRINTF("top %u -> repeat %s\n", top, pr.bounds.str().c_str());
NFAVertex u = g.start;
// Mandatory repeats to min bound.
u32 min_bound = pr.bounds.min; // always finite
if (min_bound == 0) { // Vacuous case, we can only do this once.
assert(!edge(g.start, g.accept, g).second);
NFAEdge e = add_edge(g.start, g.accept, g);
g[e].tops.insert(top);
g[u].reports.insert(pr.reports.begin(), pr.reports.end());
min_bound = 1;
}
for (u32 i = 0; i < min_bound; i++) {
NFAVertex v = add_vertex(g);
g[v].char_reach = pr.reach;
NFAEdge e = add_edge(u, v, g);
if (u == g.start) {
g[e].tops.insert(top);
}
u = v;
}
NFAVertex head = u;
// Optional repeats to max bound.
if (pr.bounds.max.is_finite()) {
assert(pr.bounds.max > depth(0));
const u32 max_bound = pr.bounds.max;
for (u32 i = 0; i < max_bound - min_bound; i++) {
NFAVertex v = add_vertex(g);
g[v].char_reach = pr.reach;
if (head != u) {
add_edge(head, v, g);
}
NFAEdge e = add_edge(u, v, g);
if (u == g.start) {
g[e].tops.insert(top);
}
u = v;
}
} else {
assert(pr.bounds.max.is_infinite());
add_edge(u, u, g);
}
// Connect to accept.
add_edge(u, g.accept, g);
g[u].reports.insert(pr.reports.begin(), pr.reports.end());
if (u != head) {
add_edge(head, g.accept, g);
g[head].reports.insert(pr.reports.begin(), pr.reports.end());
}
}
static
bool hasZeroMinBound(const CastleProto &proto) {
const depth zero(0);
for (const PureRepeat &pr : proto.repeats | map_values) {
if (pr.bounds.min == zero) {
return true;
}
}
return false;
}
unique_ptr<NGHolder> makeHolder(const CastleProto &proto,
const CompileContext &cc) {
assert(!proto.repeats.empty());
// Vacuous edges are only doable in the NGHolder if we are a single-top
// Castle.
if (hasZeroMinBound(proto)) {
if (proto.repeats.size() != 1 || proto.repeats.begin()->first != 0) {
DEBUG_PRINTF("can't build multi-top vacuous holder\n");
return nullptr;
}
}
auto g = ue2::make_unique<NGHolder>(proto.kind);
for (const auto &m : proto.repeats) {
addToHolder(*g, m.first, m.second);
}
//dumpGraph("castle_holder.dot", *g);
// Sanity checks.
assert(allMatchStatesHaveReports(*g));
assert(!has_parallel_edge(*g));
reduceGraphEquivalences(*g, cc);
removeRedundancy(*g, SOM_NONE);
return g;
}
} // namespace ue2
|