aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/fdr/fdr_confirm_compile.cpp
blob: 8e3690895ed65b06ea647679d9a0109150546bae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 * Copyright (c) 2015-2019, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fdr_internal.h"
#include "fdr_compile_internal.h"
#include "fdr_confirm.h"
#include "engine_description.h"
#include "teddy_engine_description.h"
#include "ue2common.h"
#include "util/alloc.h"
#include "util/bitutils.h"
#include "util/compare.h"
#include "util/container.h"
#include "util/verify_types.h"

#include <algorithm>
#include <cstring>
#include <set>

using namespace std;

namespace ue2 {

using BC2CONF = map<BucketIndex, bytecode_ptr<FDRConfirm>>;

static
u64a make_u64a_mask(const vector<u8> &v) {
    assert(v.size() <= sizeof(u64a));
    if (v.size() > sizeof(u64a)) {
        throw std::exception();
    }

    u64a mask = 0;
    size_t vlen = v.size();
    size_t len = std::min(vlen, sizeof(mask));
    unsigned char *m = (unsigned char *)&mask;
    memcpy(m + sizeof(mask) - len, &v[vlen - len], len);
    return mask;
}

/**
 * Build a temporary vector of LitInfo structures (without the corresponding
 * pointers to the actual strings; these cannot be laid out yet). These
 * stay in 1:1 correspondence with the lits[] vector as that's the only
 * place we have to obtain our full strings.
 */
static
void fillLitInfo(const vector<hwlmLiteral> &lits, vector<LitInfo> &tmpLitInfo,
                 CONF_TYPE &andmsk) {
    const CONF_TYPE all_ones = ~(u64a)0;
    andmsk = all_ones; // fill in with 'and' of all literal masks

    for (LiteralIndex i = 0; i < lits.size(); i++) {
        const hwlmLiteral &lit = lits[i];
        LitInfo &info = tmpLitInfo[i];
        memset(&info, 0, sizeof(info));
        info.id = lit.id;
        u8 flags = 0;
        if (lit.noruns) {
            flags |= FDR_LIT_FLAG_NOREPEAT;
        }
        info.flags = flags;
        info.size = verify_u8(max(lit.msk.size(), lit.s.size()));
        info.groups = lit.groups;

        // these are built up assuming a LE machine
        CONF_TYPE msk = all_ones;
        CONF_TYPE val = 0;
        for (u32 j = 0; j < sizeof(CONF_TYPE); j++) {
            u32 shiftLoc = (sizeof(CONF_TYPE) - j - 1) * 8;
            if (j >= lit.s.size()) {
                msk &= ~((CONF_TYPE)0xff << shiftLoc);
            } else {
                u8 c = lit.s[lit.s.size() - j - 1];
                if (lit.nocase && ourisalpha(c)) {
                    msk &= ~((CONF_TYPE)CASE_BIT << shiftLoc);
                    val |= (CONF_TYPE)(c & CASE_CLEAR) << shiftLoc;
                } else {
                    val |= (CONF_TYPE)c << shiftLoc;
                }
            }
        }

        info.v = val;
        info.msk = msk;
        if (!lit.msk.empty()) {
            u64a l_msk = make_u64a_mask(lit.msk);
            u64a l_cmp = make_u64a_mask(lit.cmp);

            // test for consistency - if there's intersection, then v and msk
            // values must line up
            UNUSED u64a intersection = l_msk & info.msk;
            assert((info.v & intersection) == (l_cmp & intersection));

            // incorporate lit.msk, lit.cmp into v and msk
            info.msk |= l_msk;
            info.v |= l_cmp;
        }

        andmsk &= info.msk;
    }
}

//#define FDR_CONFIRM_DUMP 1

static
bytecode_ptr<FDRConfirm> getFDRConfirm(const vector<hwlmLiteral> &lits,
                                       bool make_small) {
    // Every literal must fit within CONF_TYPE.
    assert(all_of_in(lits, [](const hwlmLiteral &lit) {
        return lit.s.size() <= sizeof(CONF_TYPE);
    }));

    vector<LitInfo> tmpLitInfo(lits.size());
    CONF_TYPE andmsk;
    fillLitInfo(lits, tmpLitInfo, andmsk);

#ifdef FDR_CONFIRM_DUMP
    printf("-------------------\n");
#endif

    // just magic numbers and crude measures for now
    u32 nBits;
    if (make_small) {
        nBits = min(10U, lg2(lits.size()) + 1);
    } else {
        nBits = lg2(lits.size()) + 4;
    }

    CONF_TYPE mult = (CONF_TYPE)0x0b4e0ef37bc32127ULL;

    // we can walk the vector and assign elements from the vectors to a
    // map by hash value
    map<u32, vector<LiteralIndex> > res2lits;
    hwlm_group_t gm = 0;
    for (LiteralIndex i = 0; i < lits.size(); i++) {
        LitInfo & li = tmpLitInfo[i];
        u32 hash = CONF_HASH_CALL(li.v, andmsk, mult, nBits);
        DEBUG_PRINTF("%016llx --> %u\n", li.v, hash);
        res2lits[hash].push_back(i);
        gm |= li.groups;
    }

#ifdef FDR_CONFIRM_DUMP
    // print out the literals reversed - makes it easier to line up analyses
    // that are end-offset based
    for (const auto &m : res2lits) {
        const u32 &hash = m.first;
        const vector<LiteralIndex> &vlidx = m.second;
        if (vlidx.size() <= 1) {
            continue;
        }
        printf("%x -> %zu literals\n", hash, vlidx.size());
        size_t min_len = lits[vlidx.front()].s.size();

        vector<set<u8>> vsl; // contains the set of chars at each location
                             // reversed from the end

        for (const auto &litIdx : vlidx) {
            const auto &lit = lits[litIdx];
            if (lit.s.size() > vsl.size()) {
                vsl.resize(lit.s.size());
            }
            for (size_t j = lit.s.size(); j != 0; j--) {
                vsl[lit.s.size() - j].insert(lit.s[j - 1]);
            }
            min_len = min(min_len, lit.s.size());
        }
        printf("common     ");
        for (size_t j = 0; j < min_len; j++) {
            if (vsl[j].size() == 1) {
                printf("%02x", *vsl[j].begin());
            } else {
                printf("__");
            }
        }
        printf("\n");
        for (const auto &litIdx : vlidx) {
            const auto &lit = lits[litIdx];
            printf("%8x  %c", lit.id, lit.nocase ? '!' : ' ');
            for (size_t j = lit.s.size(); j != 0; j--) {
                size_t dist_from_end = lit.s.size() - j;
                if (dist_from_end < min_len && vsl[dist_from_end].size() == 1) {
                    printf("__");
                } else {
                    printf("%02x", lit.s[j - 1]);
                }
            }
            printf("\n");
        }
        size_t total_compares = 0;
        for (const auto &v : vsl) {
            total_compares += v.size();
        }
        size_t total_string_size = 0;
        for (const auto &litIdx : vlidx) {
            const auto &lit = lits[litIdx];
            total_string_size += lit.s.size();
        }
        printf("Total compare load: %zu Total string size: %zu\n\n",
               total_compares, total_string_size);
    }
#endif

    const size_t bitsToLitIndexSize = (1U << nBits) * sizeof(u32);

    // this size can now be a worst-case as we can always be a bit smaller
    size_t size = ROUNDUP_N(sizeof(FDRConfirm), alignof(u32)) +
                  ROUNDUP_N(bitsToLitIndexSize, alignof(LitInfo)) +
                  sizeof(LitInfo) * lits.size();
    size = ROUNDUP_N(size, alignof(FDRConfirm));

    auto fdrc = make_zeroed_bytecode_ptr<FDRConfirm>(size);
    assert(fdrc); // otherwise would have thrown std::bad_alloc

    fdrc->andmsk = andmsk;
    fdrc->mult = mult;
    fdrc->nBits = nBits;

    fdrc->groups = gm;

    // After the FDRConfirm, we have the lit index array.
    u8 *fdrc_base = (u8 *)fdrc.get();
    u8 *ptr = fdrc_base + sizeof(*fdrc);
    ptr = ROUNDUP_PTR(ptr, alignof(u32));
    u32 *bitsToLitIndex = (u32 *)ptr;
    ptr += bitsToLitIndexSize;

    // After the lit index array, we have the LitInfo structures themselves,
    // which vary in size (as each may have a variable-length string after it).
    ptr = ROUNDUP_PTR(ptr, alignof(LitInfo));

    // Walk the map by hash value assigning indexes and laying out the
    // elements (and their associated string confirm material) in memory.
    for (const auto &m : res2lits) {
        const u32 hash = m.first;
        const vector<LiteralIndex> &vlidx = m.second;
        bitsToLitIndex[hash] = verify_u32(ptr - fdrc_base);
        for (auto i = vlidx.begin(), e = vlidx.end(); i != e; ++i) {
            LiteralIndex litIdx = *i;

            // Write LitInfo header.
            LitInfo &finalLI = *(LitInfo *)ptr;
            finalLI = tmpLitInfo[litIdx];

            ptr += sizeof(LitInfo); // String starts directly after LitInfo.
            assert(lits[litIdx].s.size() <= sizeof(CONF_TYPE));
            if (next(i) == e) {
                finalLI.next = 0;
            } else {
                finalLI.next = 1;
            }
        }
        assert((size_t)(ptr - fdrc_base) <= size);
    }

    // Return actual used size, not worst-case size. Must be rounded up to
    // FDRConfirm alignment so that the caller can lay out a sequence of these.
    size_t actual_size = ROUNDUP_N((size_t)(ptr - fdrc_base),
                                   alignof(FDRConfirm));
    assert(actual_size <= size);
    fdrc.shrink(actual_size);

    return fdrc;
}

bytecode_ptr<u8>
setupFullConfs(const vector<hwlmLiteral> &lits,
               const EngineDescription &eng,
               const map<BucketIndex, vector<LiteralIndex>> &bucketToLits,
               bool make_small) {
    unique_ptr<TeddyEngineDescription> teddyDescr =
        getTeddyDescription(eng.getID());

    BC2CONF bc2Conf;
    u32 totalConfirmSize = 0;
    for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) {
        if (contains(bucketToLits, b)) {
            vector<hwlmLiteral> vl;
            for (const LiteralIndex &lit_idx : bucketToLits.at(b)) {
                vl.push_back(lits[lit_idx]);
            }

            DEBUG_PRINTF("b %d sz %zu\n", b, vl.size());
            auto fc = getFDRConfirm(vl, make_small);
            totalConfirmSize += fc.size();
            bc2Conf.emplace(b, move(fc));
        }
    }

    u32 nBuckets = eng.getNumBuckets();
    u32 totalConfSwitchSize = ROUNDUP_CL(nBuckets * sizeof(u32));
    u32 totalSize = totalConfSwitchSize + totalConfirmSize;

    auto buf = make_zeroed_bytecode_ptr<u8>(totalSize, 64);
    assert(buf); // otherwise would have thrown std::bad_alloc

    u32 *confBase = (u32 *)buf.get();
    u8 *ptr = buf.get() + totalConfSwitchSize;
    assert(ISALIGNED_CL(ptr));

    for (const auto &m : bc2Conf) {
        const BucketIndex &idx = m.first;
        const bytecode_ptr<FDRConfirm> &p = m.second;
        // confirm offset is relative to the base of this structure, now
        u32 confirm_offset = verify_u32(ptr - buf.get());
        memcpy(ptr, p.get(), p.size());
        ptr += p.size();
        confBase[idx] = confirm_offset;
    }

    return buf;
}

} // namespace ue2