aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/fdr/fdr_compile.cpp
blob: fcfc08638e8962761bb76f310f58324455784fb3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/*
 * Copyright (c) 2015-2019, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief FDR literal matcher: build API.
 */

#include "fdr_compile.h"

#include "fdr_internal.h"
#include "fdr_confirm.h"
#include "fdr_compile_internal.h"
#include "fdr_engine_description.h"
#include "teddy_compile.h"
#include "teddy_engine_description.h"
#include "grey.h"
#include "ue2common.h"
#include "hwlm/hwlm_build.h"
#include "util/compare.h"
#include "util/container.h"
#include "util/dump_mask.h"
#include "util/make_unique.h"
#include "util/math.h"
#include "util/noncopyable.h"
#include "util/target_info.h"
#include "util/ue2string.h"
#include "util/verify_types.h"

#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <boost/multi_array.hpp>

using namespace std;

namespace ue2 {

namespace {

class FDRCompiler : noncopyable {
private:
    const FDREngineDescription &eng;
    const Grey &grey;
    vector<u8> tab;
    vector<hwlmLiteral> lits;
    map<BucketIndex, std::vector<LiteralIndex> > bucketToLits;
    bool make_small;

    u8 *tabIndexToMask(u32 indexInTable);
#ifdef DEBUG
    void dumpMasks(const u8 *defaultMask);
#endif
    void setupTab();
    bytecode_ptr<FDR> setupFDR();
    void createInitialState(FDR *fdr);

public:
    FDRCompiler(vector<hwlmLiteral> lits_in,
                map<BucketIndex, std::vector<LiteralIndex>> bucketToLits_in,
                const FDREngineDescription &eng_in,
                bool make_small_in, const Grey &grey_in)
        : eng(eng_in), grey(grey_in), tab(eng_in.getTabSizeBytes()),
          lits(move(lits_in)), bucketToLits(move(bucketToLits_in)),
          make_small(make_small_in) {}

    bytecode_ptr<FDR> build();
};

u8 *FDRCompiler::tabIndexToMask(u32 indexInTable) {
    assert(indexInTable < tab.size());
    return &tab[0] + (indexInTable * (eng.getSchemeWidth() / 8));
}

static
void setbit(u8 *msk, u32 bit) {
    msk[bit / 8] |= 1U << (bit % 8);
}

static
void clearbit(u8 *msk, u32 bit) {
    msk[bit / 8] &= ~(1U << (bit % 8));
}

static
void andMask(u8 *dest, const u8 *a, const u8 *b, u32 num_bytes) {
    for (u32 i = 0; i < num_bytes; i++) {
        dest[i] = a[i] & b[i];
    }
}

void FDRCompiler::createInitialState(FDR *fdr) {
    u8 *start = (u8 *)&fdr->start;

    /* initial state should to be 1 in each slot in the bucket up to bucket
     * minlen - 1, and 0 thereafter */
    for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) {
        // Find the minimum length for the literals in this bucket.
        const vector<LiteralIndex> &bucket_lits = bucketToLits[b];
        u32 min_len = ~0U;
        for (const LiteralIndex &lit_idx : bucket_lits) {
            min_len = min(min_len, verify_u32(lits[lit_idx].s.length()));
        }

        DEBUG_PRINTF("bucket %u has min_len=%u\n", b, min_len);
        assert(min_len);

        for (PositionInBucket i = 0; i < eng.getBucketWidth(b); i++) {
            if (i < min_len - 1) {
                setbit(start, eng.getSchemeBit(b, i));
            }
        }
    }
}

/**
 * \brief Lay out FDR structures in bytecode.
 *
 * Note that each major structure (header, table, confirm, flood control) is
 * cacheline-aligned.
 */
bytecode_ptr<FDR> FDRCompiler::setupFDR() {
    auto floodTable = setupFDRFloodControl(lits, eng, grey);
    auto confirmTable = setupFullConfs(lits, eng, bucketToLits, make_small);

    size_t headerSize = sizeof(FDR);
    size_t tabSize = eng.getTabSizeBytes();

    // Note: we place each major structure here on a cacheline boundary.
    size_t size = ROUNDUP_CL(headerSize) + ROUNDUP_CL(tabSize) +
                  ROUNDUP_CL(confirmTable.size()) + floodTable.size();

    DEBUG_PRINTF("sizes base=%zu tabSize=%zu confirm=%zu floodControl=%zu "
                 "total=%zu\n",
                 headerSize, tabSize, confirmTable.size(), floodTable.size(),
                 size);

    auto fdr = make_zeroed_bytecode_ptr<FDR>(size, 64);
    assert(fdr); // otherwise would have thrown std::bad_alloc

    u8 *fdr_base = (u8 *)fdr.get();

    // Write header.
    fdr->size = size;
    fdr->engineID = eng.getID();
    fdr->maxStringLen = verify_u32(maxLen(lits));
    fdr->numStrings = verify_u32(lits.size());
    assert(eng.bits > 8 && eng.bits < 16); // we allow domains 9 to 15 only
    fdr->domain = eng.bits;
    fdr->domainMask = (1 << eng.bits) - 1;
    fdr->tabSize = tabSize;
    fdr->stride = eng.stride;
    createInitialState(fdr.get());

    // Write table.
    u8 *ptr = fdr_base + ROUNDUP_CL(sizeof(FDR));
    assert(ISALIGNED_CL(ptr));
    copy(tab.begin(), tab.end(), ptr);
    ptr += ROUNDUP_CL(tabSize);

    // Write confirm structures.
    assert(ISALIGNED_CL(ptr));
    fdr->confOffset = verify_u32(ptr - fdr_base);
    memcpy(ptr, confirmTable.get(), confirmTable.size());
    ptr += ROUNDUP_CL(confirmTable.size());

    // Write flood control structures.
    assert(ISALIGNED_CL(ptr));
    fdr->floodOffset = verify_u32(ptr - fdr_base);
    memcpy(ptr, floodTable.get(), floodTable.size());
    ptr += floodTable.size(); // last write, no need to round up

    return fdr;
}

//#define DEBUG_ASSIGNMENT

/**
 * Utility class for computing:
 *
 *    score(count, len) = pow(count, 1.05) * pow(len, -3)
 *
 * Calling pow() is expensive. This is mitigated by using pre-computed LUTs for
 * small inputs and a cache for larger ones.
 */
class Scorer {
    unordered_map<u32, double> count_factor_cache;

    // LUT: pow(count, 1.05) for small values of count.
    static const array<double, 100> count_lut;

    double count_factor(u32 count) {
        if (count < count_lut.size()) {
            return count_lut[count];
        }

        auto it = count_factor_cache.find(count);
        if (it != count_factor_cache.end()) {
            return it->second;
        }
        double r = our_pow(count, 1.05);
        count_factor_cache.emplace(count, r);
        return r;
    }

    // LUT: pow(len, -3) for len in range [0,8].
    static const array<double, 9> len_lut;

    double len_factor(u32 len) {
        assert(len <= len_lut.size());
        return len_lut[len];
    }

public:
    double operator()(u32 len, u32 count) {
        if (len == 0) {
            return numeric_limits<double>::max();
        }
        return count_factor(count) * len_factor(len);
    }
};

const array<double, 100> Scorer::count_lut{{
    pow(0, 1.05),  pow(1, 1.05),  pow(2, 1.05),  pow(3, 1.05),  pow(4, 1.05),
    pow(5, 1.05),  pow(6, 1.05),  pow(7, 1.05),  pow(8, 1.05),  pow(9, 1.05),
    pow(10, 1.05), pow(11, 1.05), pow(12, 1.05), pow(13, 1.05), pow(14, 1.05),
    pow(15, 1.05), pow(16, 1.05), pow(17, 1.05), pow(18, 1.05), pow(19, 1.05),
    pow(20, 1.05), pow(21, 1.05), pow(22, 1.05), pow(23, 1.05), pow(24, 1.05),
    pow(25, 1.05), pow(26, 1.05), pow(27, 1.05), pow(28, 1.05), pow(29, 1.05),
    pow(30, 1.05), pow(31, 1.05), pow(32, 1.05), pow(33, 1.05), pow(34, 1.05),
    pow(35, 1.05), pow(36, 1.05), pow(37, 1.05), pow(38, 1.05), pow(39, 1.05),
    pow(40, 1.05), pow(41, 1.05), pow(42, 1.05), pow(43, 1.05), pow(44, 1.05),
    pow(45, 1.05), pow(46, 1.05), pow(47, 1.05), pow(48, 1.05), pow(49, 1.05),
    pow(50, 1.05), pow(51, 1.05), pow(52, 1.05), pow(53, 1.05), pow(54, 1.05),
    pow(55, 1.05), pow(56, 1.05), pow(57, 1.05), pow(58, 1.05), pow(59, 1.05),
    pow(60, 1.05), pow(61, 1.05), pow(62, 1.05), pow(63, 1.05), pow(64, 1.05),
    pow(65, 1.05), pow(66, 1.05), pow(67, 1.05), pow(68, 1.05), pow(69, 1.05),
    pow(70, 1.05), pow(71, 1.05), pow(72, 1.05), pow(73, 1.05), pow(74, 1.05),
    pow(75, 1.05), pow(76, 1.05), pow(77, 1.05), pow(78, 1.05), pow(79, 1.05),
    pow(80, 1.05), pow(81, 1.05), pow(82, 1.05), pow(83, 1.05), pow(84, 1.05),
    pow(85, 1.05), pow(86, 1.05), pow(87, 1.05), pow(88, 1.05), pow(89, 1.05),
    pow(90, 1.05), pow(91, 1.05), pow(92, 1.05), pow(93, 1.05), pow(94, 1.05),
    pow(95, 1.05), pow(96, 1.05), pow(97, 1.05), pow(98, 1.05), pow(99, 1.05),
}};

const array<double, 9> Scorer::len_lut{{
    0, pow(1, -3.0), pow(2, -3.0), pow(3, -3.0), pow(4, -3.0),
       pow(5, -3.0), pow(6, -3.0), pow(7, -3.0), pow(8, -3.0)}};

/**
 * Returns true if the two given literals should be placed in the same chunk as
 * they are identical except for a difference in caselessness.
 */
static
bool isEquivLit(const hwlmLiteral &a, const hwlmLiteral &b,
                const hwlmLiteral *last_nocase_lit) {
    const size_t a_len = a.s.size();
    const size_t b_len = b.s.size();

    if (a_len != b_len) {
        return false;
    }

    bool nocase = last_nocase_lit && a_len == last_nocase_lit->s.size() &&
                  !cmp(a.s.c_str(), last_nocase_lit->s.c_str(), a_len, true);
    return !cmp(a.s.c_str(), b.s.c_str(), a.s.size(), nocase);
}

struct Chunk {
    Chunk(u32 first_id_in, u32 count_in, u32 length_in)
        : first_id(first_id_in), count(count_in), length(length_in) {}
    u32 first_id; //!< first id in this chunk
    u32 count;    //!< how many are in this chunk
    u32 length;   //!< how long things in the chunk are
};

static
vector<Chunk> assignChunks(const vector<hwlmLiteral> &lits,
                           const map<u32, u32> &lenCounts) {
    const u32 CHUNK_MAX = 512;
    const u32 MAX_CONSIDERED_LENGTH = 16;

    // TODO: detailed early stage literal analysis for v. small cases (actually
    // look at lits) yes - after we factor this out and merge in the Teddy
    // style of building we can look at this, although the teddy merge
    // modelling is quite different. It's still probably adaptable to some
    // extent for this class of problem.

    vector<Chunk> chunks;
    chunks.reserve(CHUNK_MAX);

    const u32 maxPerChunk = lits.size() /
            (CHUNK_MAX - MIN(MAX_CONSIDERED_LENGTH, lenCounts.size())) + 1;

    u32 currentSize = 0;
    u32 chunkStartID = 0;
    const hwlmLiteral *last_nocase_lit = nullptr;

    for (u32 i = 0; i < lits.size() && chunks.size() < CHUNK_MAX - 1; i++) {
        const auto &lit = lits[i];

        DEBUG_PRINTF("i=%u, lit=%s%s\n", i, escapeString(lit.s).c_str(),
                      lit.nocase ? " (nocase)" : "");

        // If this literal is identical to the last one (aside from differences
        // in caselessness), keep going even if we will "overfill" a chunk; we
        // don't want to split identical literals into different buckets.
        if (i != 0 && isEquivLit(lit, lits[i - 1], last_nocase_lit)) {
            DEBUG_PRINTF("identical lit\n");
            goto next_literal;
        }

        if ((currentSize < MAX_CONSIDERED_LENGTH &&
             (lit.s.size() != currentSize)) ||
            (currentSize != 1 && ((i - chunkStartID) >= maxPerChunk))) {
            currentSize = lit.s.size();
            if (!chunks.empty()) {
                chunks.back().count = i - chunkStartID;
            }
            chunkStartID = i;
            chunks.emplace_back(i, 0, currentSize);
        }
next_literal:
        if (lit.nocase) {
            last_nocase_lit = &lit;
        }
    }

    assert(!chunks.empty());
    chunks.back().count = lits.size() - chunkStartID;
    // close off chunks with an empty row
    chunks.emplace_back(lits.size(), 0, 0);

#ifdef DEBUG_ASSIGNMENT
    for (size_t j = 0; j < chunks.size(); j++) {
        const auto &chunk = chunks[j];
        printf("chunk %zu first_id=%u count=%u length=%u\n", j, chunk.first_id,
               chunk.count, chunk.length);
    }
#endif

    DEBUG_PRINTF("built %zu chunks (%zu lits)\n", chunks.size(), lits.size());
    assert(chunks.size() <= CHUNK_MAX);
    return chunks;
}

static
map<BucketIndex, vector<LiteralIndex>> assignStringsToBuckets(
                                    vector<hwlmLiteral> &lits,
                                    const FDREngineDescription &eng) {
    const double MAX_SCORE = numeric_limits<double>::max();

    assert(!lits.empty()); // Shouldn't be called with no literals.

    // Count the number of literals for each length.
    map<u32, u32> lenCounts;
    for (const auto &lit : lits) {
        lenCounts[lit.s.size()]++;
    }

#ifdef DEBUG_ASSIGNMENT
    for (const auto &m : lenCounts) {
        printf("l<%u>:%u ", m.first, m.second);
    }
    printf("\n");
#endif

    // Sort literals by literal length. If tied on length, use lexicographic
    // ordering (of the reversed literals).
    stable_sort(lits.begin(), lits.end(),
                [](const hwlmLiteral &a, const hwlmLiteral &b) {
                    if (a.s.size() != b.s.size()) {
                        return a.s.size() < b.s.size();
                    }
                    auto p = mismatch(a.s.rbegin(), a.s.rend(), b.s.rbegin());
                    if (p.first != a.s.rend()) {
                        return *p.first < *p.second;
                    }
                    // Sort caseless variants first.
                    return a.nocase > b.nocase;
                });

    vector<Chunk> chunks = assignChunks(lits, lenCounts);

    const u32 numChunks = chunks.size();
    const u32 numBuckets = eng.getNumBuckets();

    // 2D array of (score, chunk index) pairs, indexed by
    // [chunk_index][bucket_index].
    boost::multi_array<pair<double, u32>, 2> t(
        boost::extents[numChunks][numBuckets]);

    Scorer scorer;

    for (u32 j = 0; j < numChunks; j++) {
        u32 cnt = 0;
        for (u32 k = j; k < numChunks; ++k) {
            cnt += chunks[k].count;
        }
        t[j][0] = {scorer(chunks[j].length, cnt), 0};
    }

    for (u32 i = 1; i < numBuckets; i++) {
        for (u32 j = 0; j < numChunks - 1; j++) { // don't do last, empty row
            pair<double, u32> best = {MAX_SCORE, 0};
            u32 cnt = chunks[j].count;
            for (u32 k = j + 1; k < numChunks - 1; k++) {
                auto score = scorer(chunks[j].length, cnt);
                if (score > best.first) {
                    break; // now worse locally than our best score, give up
                }
                score += t[k][i-1].first;
                if (score < best.first) {
                    best = {score, k};
                }
                cnt += chunks[k].count;
            }
            t[j][i] = best;
        }
        t[numChunks - 1][i] = {0,0}; // fill in empty final row for next iter
    }

#ifdef DEBUG_ASSIGNMENT
    for (u32 j = 0; j < numChunks; j++) {
        printf("%03u: ", j);
        for (u32 i = 0; i < numBuckets; i++) {
            const auto &v = t[j][i];
            printf("<%0.3f,%3d> ", v.first, v.second);
        }
        printf("\n");
    }
#endif

    // our best score is in t[0][N_BUCKETS-1] and we can follow the links
    // to find where our buckets should start and what goes into them
    vector<vector<LiteralIndex>> buckets;
    for (u32 i = 0, n = numBuckets; n && (i != numChunks - 1); n--) {
        u32 j = t[i][n - 1].second;
        if (j == 0) {
            j = numChunks - 1;
        }

        // put chunks between i - j into bucket (numBuckets - n).
        u32 first_id = chunks[i].first_id;
        u32 last_id = chunks[j].first_id;
        assert(first_id < last_id);
        UNUSED const auto &first_lit = lits[first_id];
        UNUSED const auto &last_lit = lits[last_id - 1];
        DEBUG_PRINTF("placing [%u-%u) in one bucket (%u lits, len %zu-%zu, "
                     "score %0.4f)\n",
                     first_id, last_id, last_id - first_id,
                     first_lit.s.length(), last_lit.s.length(),
                     scorer(first_lit.s.length(), last_id - first_id));

        vector<LiteralIndex> litIds;
        u32 cnt = last_id - first_id;
        // long literals first for included literals checking
        for (u32 k = 0; k < cnt; k++) {
            litIds.push_back(last_id - k - 1);
        }

        i = j;
        buckets.push_back(litIds);
    }

    // reverse bucket id, longer literals come first
    map<BucketIndex, vector<LiteralIndex>> bucketToLits;
    size_t bucketCnt = buckets.size();
    for (size_t i = 0; i < bucketCnt; i++) {
        bucketToLits.emplace(bucketCnt - i - 1, move(buckets[i]));
    }

    return bucketToLits;
}

#ifdef DEBUG
void FDRCompiler::dumpMasks(const u8 *defaultMask) {
    const size_t width = eng.getSchemeWidth();
    printf("default mask: %s\n", dumpMask(defaultMask, width).c_str());
    for (u32 i = 0; i < eng.getNumTableEntries(); i++) {
        u8 *m = tabIndexToMask(i);
        if (memcmp(m, defaultMask, width / 8)) {
            printf("tab %04x: %s\n", i, dumpMask(m, width).c_str());
        }
    }
}
#endif

static
bool getMultiEntriesAtPosition(const FDREngineDescription &eng,
                               const vector<LiteralIndex> &vl,
                               const vector<hwlmLiteral> &lits,
                               SuffixPositionInString pos,
                               map<u32, unordered_set<u32>> &m2) {
    assert(eng.bits < 32);

    u32 distance = 0;
    if (eng.bits <= 8) {
        distance = 1;
    } else if (eng.bits <= 16) {
        distance = 2;
    } else {
        distance = 4;
    }

    for (auto i = vl.begin(), e = vl.end(); i != e; ++i) {
        if (e - i > 5) {
            __builtin_prefetch(&lits[*(i + 5)]);
        }
        const hwlmLiteral &lit = lits[*i];
        const size_t sz = lit.s.size();
        u32 mask = 0;
        u32 dontCares = 0;
        for (u32 cnt = 0; cnt < distance; cnt++) {
            int newPos = pos - cnt;
            u8 dontCareByte = 0x0;
            u8 maskByte = 0x0;
            if (newPos < 0 || ((u32)newPos >= sz)) {
                dontCareByte = 0xff;
            } else {
                u8 c = lit.s[sz - newPos - 1];
                maskByte = c;
                u32 remainder = eng.bits - cnt * 8;
                assert(remainder != 0);
                if (remainder < 8) {
                    u8 cmask = (1U << remainder) - 1;
                    maskByte &= cmask;
                    dontCareByte |= ~cmask;
                }
                if (lit.nocase && ourisalpha(c)) {
                    maskByte &= 0xdf;
                    dontCareByte |= 0x20;
                }
            }
            u32 loc =  cnt * 8;
            mask |= maskByte << loc;
            dontCares |= dontCareByte << loc;
        }

        // truncate m and dc down to nBits
        mask &= (1U << eng.bits) - 1;
        dontCares &= (1U << eng.bits) - 1;
        if (dontCares == ((1U << eng.bits) - 1)) {
            return true;
        }
        m2[dontCares].insert(mask);
    }
    return false;
}

void FDRCompiler::setupTab() {
    const size_t mask_size = eng.getSchemeWidth() / 8;
    assert(mask_size);

    vector<u8> defaultMask(mask_size, 0xff);
    for (u32 i = 0; i < eng.getNumTableEntries(); i++) {
        memcpy(tabIndexToMask(i), &defaultMask[0], mask_size);
    }

    for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) {
        const vector<LiteralIndex> &vl = bucketToLits[b];
        SuffixPositionInString pLimit = eng.getBucketWidth(b);
        for (SuffixPositionInString pos = 0; pos < pLimit; pos++) {
            u32 bit = eng.getSchemeBit(b, pos);
            map<u32, unordered_set<u32>> m2;
            bool done = getMultiEntriesAtPosition(eng, vl, lits, pos, m2);
            if (done) {
                clearbit(&defaultMask[0], bit);
                continue;
            }
            for (const auto &elem : m2) {
                u32 dc = elem.first;
                const unordered_set<u32> &mskSet = elem.second;
                u32 v = ~dc;
                do {
                    u32 b2 = v & dc;
                    for (const u32 &mskVal : mskSet) {
                        u32 val = (mskVal & ~dc) | b2;
                        clearbit(tabIndexToMask(val), bit);
                    }
                    v = (v + (dc & -dc)) | ~dc;
                } while (v != ~dc);
            }
        }
    }

    for (u32 i = 0; i < eng.getNumTableEntries(); i++) {
        u8 *m = tabIndexToMask(i);
        andMask(m, m, &defaultMask[0], mask_size);
    }
#ifdef DEBUG
    dumpMasks(&defaultMask[0]);
#endif
}

bytecode_ptr<FDR> FDRCompiler::build() {
    setupTab();
    return setupFDR();
}

static
bool isSuffix(const hwlmLiteral &lit1, const hwlmLiteral &lit2) {
    const auto &s1 = lit1.s;
    const auto &s2 = lit2.s;
    size_t len1 = s1.length();
    size_t len2 = s2.length();
    assert(len1 >= len2);

    if (lit1.nocase || lit2.nocase) {
        return equal(s2.begin(), s2.end(), s1.begin() + len1 - len2,
            [](char a, char b) { return mytoupper(a) == mytoupper(b); });
    } else {
        return equal(s2.begin(), s2.end(), s1.begin() + len1 - len2);
    }
}

/*
 * if lit2 is a suffix of lit1 but the case sensitivity, groups or mask info
 * of lit2 is a subset of lit1, then lit1 can't squash lit2 and lit2 can
 * possibly match when lit1 matches. In this case, we can't do bucket
 * squashing. e.g. AAA(no case) in bucket 0, AA(no case) and aa in bucket 1,
 * we can't squash bucket 1 if we have input like "aaa" as aa can also match.
 */
static
bool includedCheck(const hwlmLiteral &lit1, const hwlmLiteral &lit2) {
    /* lit1 is caseless and lit2 is case sensitive */
    if ((lit1.nocase && !lit2.nocase)) {
        return true;
    }

    /* lit2's group is a subset of lit1 */
    if (lit1.groups != lit2.groups &&
        (lit2.groups == (lit1.groups & lit2.groups))) {
        return true;
    }

    /* TODO: narrow down cases for mask check */
    if (lit1.cmp != lit2.cmp || lit1.msk != lit2.msk) {
        return true;
    }

    return false;
}

/*
 * if lit2 is an included literal of both lit0 and lit1, then lit0 and lit1
 * shouldn't match at the same offset, otherwise we give up squashing for lit1.
 * e.g. lit0:AAA(no case), lit1:aa, lit2:A(no case). We can have duplicate
 * matches for input "aaa" if lit0 and lit1 both squash lit2.
 */
static
bool checkParentLit(
            const vector<hwlmLiteral> &lits, u32 pos1,
            const unordered_set<u32> &parent_map,
            const unordered_map<u32, unordered_set<u32>> &exception_map) {
    assert(pos1 < lits.size());
    const auto &lit1 = lits[pos1];
    for (const auto pos2 : parent_map) {
        if (contains(exception_map, pos2)) {
            const auto &exception_pos = exception_map.at(pos2);
            if (contains(exception_pos, pos1)) {
                return false;
            }
        }

        /* if lit1 isn't an exception of lit2, then we have to do further
         * exclusive check.
         * TODO: More mask checks. Note if two literals are group exclusive,
         * it is possible that they match at the same offset. */
        assert(pos2 < lits.size());
        const auto &lit2 = lits[pos2];
        if (isSuffix(lit2, lit1)) {
            return false;
        }
    }

    return true;
}

static
void buildSquashMask(vector<hwlmLiteral> &lits, u32 id1, u32 bucket1,
                     size_t start, const vector<pair<u32, u32>> &group,
                     unordered_map<u32, unordered_set<u32>> &parent_map,
                     unordered_map<u32, unordered_set<u32>> &exception_map) {
    auto &lit1 = lits[id1];
    DEBUG_PRINTF("b:%u len:%zu\n", bucket1, lit1.s.length());

    size_t cnt = group.size();
    bool included = false;
    bool exception = false;
    u32 child_id = ~0U;
    for (size_t i = start; i < cnt; i++) {
        u32 bucket2 = group[i].first;
        assert(bucket2 >= bucket1);

        u32 id2 = group[i].second;
        auto &lit2 = lits[id2];
        // check if lit2 is a suffix of lit1
        if (isSuffix(lit1, lit2)) {
            /* if we have a included literal in the same bucket,
             * quit and let the included literal to do possible squashing */
            if (bucket1 == bucket2) {
                DEBUG_PRINTF("same bucket\n");
                return;
            }
            /* if lit2 is a suffix but doesn't pass included checks for
             * extra info, we give up sqaushing */
            if (includedCheck(lit1, lit2)) {
                DEBUG_PRINTF("find exceptional suffix %u\n", lit2.id);
                exception_map[id1].insert(id2);
                exception = true;
            } else if (checkParentLit(lits, id1, parent_map[id2],
                       exception_map)) {
                if (lit1.included_id == INVALID_LIT_ID) {
                    DEBUG_PRINTF("find suffix lit1 %u lit2 %u\n",
                                 lit1.id, lit2.id);
                    lit1.included_id = lit2.id;
                } else {
                    /* if we have multiple included literals in one bucket,
                     * give up squashing. */
                    DEBUG_PRINTF("multiple included literals\n");
                    lit1.included_id = INVALID_LIT_ID;
                    return;
                }
                child_id = id2;
                included = true;
            }
        }

        size_t next = i + 1;
        u32 nextBucket = next < cnt ? group[next].first : ~0U;
        if (bucket2 != nextBucket) {
            if (included) {
                if (exception) {
                    /* give up if we have exception literals
                     * in the same bucket as the included literal. */
                    lit1.included_id = INVALID_LIT_ID;
                } else {
                    parent_map[child_id].insert(id1);

                    lit1.squash |= 1U << bucket2;
                    DEBUG_PRINTF("build squash mask %2x for %u\n",
                                 lit1.squash, lit1.id);
                }
                return;
            }
            exception = false;
        }
    }
}

static constexpr u32 INCLUDED_LIMIT = 1000;

static
void findIncludedLits(vector<hwlmLiteral> &lits,
                      const vector<vector<pair<u32, u32>>> &lastCharMap) {
    /* Map for finding the positions of literal which includes a literal
     * in FDR hwlm literal vector. */
    unordered_map<u32, unordered_set<u32>> parent_map;

    /* Map for finding the positions of exception literals which could
     * sometimes match if a literal matches in FDR hwlm literal vector. */
    unordered_map<u32, unordered_set<u32>> exception_map;
    for (const auto &group : lastCharMap) {
        size_t cnt = group.size();
        if (cnt > INCLUDED_LIMIT) {
            continue;
        }
        for (size_t i = 0; i < cnt; i++) {
            u32 bucket1 = group[i].first;
            u32 id1 = group[i].second;
            buildSquashMask(lits, id1, bucket1, i + 1, group, parent_map,
                            exception_map);
        }
    }
}

static
void addIncludedInfo(
               vector<hwlmLiteral> &lits, u32 nBuckets,
               map<BucketIndex, vector<LiteralIndex>> &bucketToLits) {
    vector<vector<pair<u32, u32>>> lastCharMap(256);

    for (BucketIndex b = 0; b < nBuckets; b++) {
        if (!bucketToLits[b].empty()) {
            for (const LiteralIndex &lit_idx : bucketToLits[b]) {
                const auto &lit = lits[lit_idx];
                u8 c = mytoupper(lit.s.back());
                lastCharMap[c].emplace_back(b, lit_idx);
            }
        }
    }

    findIncludedLits(lits, lastCharMap);
}

} // namespace

static
unique_ptr<HWLMProto> fdrBuildProtoInternal(u8 engType,
                                            vector<hwlmLiteral> &lits,
                                            bool make_small,
                                            const target_t &target,
                                            const Grey &grey, u32 hint) {
    DEBUG_PRINTF("cpu has %s\n", target.has_avx2() ? "avx2" : "no-avx2");

    if (grey.fdrAllowTeddy) {
        auto proto = teddyBuildProtoHinted(engType, lits, make_small, hint,
                                           target);
        if (proto) {
            DEBUG_PRINTF("build with teddy succeeded\n");
            return proto;
        } else {
            DEBUG_PRINTF("build with teddy failed, will try with FDR\n");
        }
    }

    auto des = (hint == HINT_INVALID) ? chooseEngine(target, lits, make_small)
                                      : getFdrDescription(hint);
    if (!des) {
        return nullptr;
    }

    // temporary hack for unit testing
    if (hint != HINT_INVALID) {
        des->bits = 9;
        des->stride = 1;
    }

    auto bucketToLits = assignStringsToBuckets(lits, *des);
    addIncludedInfo(lits, des->getNumBuckets(), bucketToLits);
    auto proto =
        ue2::make_unique<HWLMProto>(engType, move(des), lits, bucketToLits,
                                    make_small);
    return proto;
}

unique_ptr<HWLMProto> fdrBuildProto(u8 engType, vector<hwlmLiteral> lits,
                                    bool make_small, const target_t &target,
                                    const Grey &grey) {
    return fdrBuildProtoInternal(engType, lits, make_small, target, grey,
                                 HINT_INVALID);
}

static
bytecode_ptr<FDR> fdrBuildTableInternal(const HWLMProto &proto,
                                        const Grey &grey) {

    if (proto.teddyEng) {
        return teddyBuildTable(proto, grey);
    }

    FDRCompiler fc(proto.lits, proto.bucketToLits, *(proto.fdrEng),
                   proto.make_small, grey);
    return fc.build();
}

bytecode_ptr<FDR> fdrBuildTable(const HWLMProto &proto, const Grey &grey) {
    return fdrBuildTableInternal(proto, grey);
}

#if !defined(RELEASE_BUILD)

unique_ptr<HWLMProto> fdrBuildProtoHinted(u8 engType,
                                          vector<hwlmLiteral> lits,
                                          bool make_small, u32 hint,
                                          const target_t &target,
                                          const Grey &grey) {
    return fdrBuildProtoInternal(engType, lits, make_small, target, grey,
                                 hint);
}

#endif

size_t fdrSize(const FDR *fdr) {
    assert(fdr);
    return fdr->size;
}

} // namespace ue2