aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/fdr/fdr.c
blob: d33756d3588bc69b0c27230aeee639fc8e5d4eea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
 * Copyright (c) 2015-2017, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fdr.h"
#include "fdr_confirm.h"
#include "fdr_confirm_runtime.h"
#include "fdr_internal.h"
#include "fdr_loadval.h"
#include "flood_runtime.h"
#include "scratch.h"
#include "teddy.h"
#include "teddy_internal.h"
#include "util/arch.h"
#include "util/simd_utils.h"
#include "util/uniform_ops.h"

/** \brief number of bytes processed in each iteration */
#define ITER_BYTES          16

/** \brief total zone buffer size */
#define ZONE_TOTAL_SIZE     64

/** \brief maximum number of allowed zones */
#define ZONE_MAX            3

/** \brief zone information.
 *
 * Zone represents a region of data to scan in FDR.
 *
 * The incoming buffer is to split in multiple zones to ensure two properties:
 * 1: that we can read 8? bytes behind to generate a hash safely
 * 2: that we can read the 3 byte after the current byte (domain > 8)
 */
struct zone {
    /** \brief copied buffer, used only when it is a boundary zone. */
    u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE];

    /** \brief shift amount for fdr state to avoid unwanted match. */
    u8 shift;

    /** \brief if boundary zone, start points into the zone buffer after the
     * pre-padding. Otherwise, points to the main buffer, appropriately. */
    const u8 *start;

    /** \brief if boundary zone, end points to the end of zone. Otherwise,
     * pointer to the main buffer, appropriately. */
    const u8 *end;

    /** \brief the amount to adjust to go from a pointer in the zones region
     * (between start and end) to a pointer in the original data buffer. */
    ptrdiff_t zone_pointer_adjust;

    /** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones,
     * otherwise end of the zone buf. floodPtr always points inside the same
     * buffer as the start pointe. */
    const u8 *floodPtr;
};

static
const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = {
    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 },
    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
};

/* compilers don't reliably synthesize the 32-bit ANDN instruction here,
 * so we force its generation.
 */
static really_inline
u64a andn(const u32 a, const u8 *b) {
    u64a r;
#if defined(HAVE_BMI) && !defined(NO_ASM)
    __asm__ ("andn\t%2,%1,%k0" : "=r"(r) : "r"(a), "m"(*(const u32 *)b));
#else
    r = unaligned_load_u32(b) & ~a;
#endif
    return r;
}

/* generates an initial state mask based on the last byte-ish of history rather
 * than being all accepting. If there is no history to consider, the state is
 * generated based on the minimum length of each bucket in order to prevent
 * confirms.
 */
static really_inline
m128 getInitState(const struct FDR *fdr, u8 len_history, const u64a *ft,
                  const struct zone *z) {
    m128 s;
    if (len_history) {
        /* +1: the zones ensure that we can read the byte at z->end */
        u32 tmp = lv_u16(z->start + z->shift - 1, z->buf, z->end + 1);
        tmp &= fdr->domainMask;
        s = load_m128_from_u64a(ft + tmp);
        s = rshiftbyte_m128(s, 1);
    } else {
        s = fdr->start;
    }
    return s;
}

static really_inline
void get_conf_stride_1(const u8 *itPtr, UNUSED const u8 *start_ptr,
                       UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
                       const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
    /* +1: the zones ensure that we can read the byte at z->end */
    assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
    u64a reach0 = andn(domain_mask_flipped, itPtr);
    u64a reach1 = andn(domain_mask_flipped, itPtr + 1);
    u64a reach2 = andn(domain_mask_flipped, itPtr + 2);
    u64a reach3 = andn(domain_mask_flipped, itPtr + 3);

    m128 st0 = load_m128_from_u64a(ft + reach0);
    m128 st1 = load_m128_from_u64a(ft + reach1);
    m128 st2 = load_m128_from_u64a(ft + reach2);
    m128 st3 = load_m128_from_u64a(ft + reach3);

    u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
    u64a reach5 = andn(domain_mask_flipped, itPtr + 5);
    u64a reach6 = andn(domain_mask_flipped, itPtr + 6);
    u64a reach7 = andn(domain_mask_flipped, itPtr + 7);

    m128 st4 = load_m128_from_u64a(ft + reach4);
    m128 st5 = load_m128_from_u64a(ft + reach5);
    m128 st6 = load_m128_from_u64a(ft + reach6);
    m128 st7 = load_m128_from_u64a(ft + reach7);

    st1 = lshiftbyte_m128(st1, 1);
    st2 = lshiftbyte_m128(st2, 2);
    st3 = lshiftbyte_m128(st3, 3);
    st4 = lshiftbyte_m128(st4, 4);
    st5 = lshiftbyte_m128(st5, 5);
    st6 = lshiftbyte_m128(st6, 6);
    st7 = lshiftbyte_m128(st7, 7);

    st0 = or128(st0, st1);
    st2 = or128(st2, st3);
    st4 = or128(st4, st5);
    st6 = or128(st6, st7);
    st0 = or128(st0, st2);
    st4 = or128(st4, st6);
    st0 = or128(st0, st4);
    *s = or128(*s, st0);

    *conf0 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf0 ^= ~0ULL;

    u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
    u64a reach9 = andn(domain_mask_flipped, itPtr + 9);
    u64a reach10 = andn(domain_mask_flipped, itPtr + 10);
    u64a reach11 = andn(domain_mask_flipped, itPtr + 11);

    m128 st8 = load_m128_from_u64a(ft + reach8);
    m128 st9 = load_m128_from_u64a(ft + reach9);
    m128 st10 = load_m128_from_u64a(ft + reach10);
    m128 st11 = load_m128_from_u64a(ft + reach11);

    u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
    u64a reach13 = andn(domain_mask_flipped, itPtr + 13);
    u64a reach14 = andn(domain_mask_flipped, itPtr + 14);
    u64a reach15 = andn(domain_mask_flipped, itPtr + 15);

    m128 st12 = load_m128_from_u64a(ft + reach12);
    m128 st13 = load_m128_from_u64a(ft + reach13);
    m128 st14 = load_m128_from_u64a(ft + reach14);
    m128 st15 = load_m128_from_u64a(ft + reach15);

    st9 = lshiftbyte_m128(st9, 1);
    st10 = lshiftbyte_m128(st10, 2);
    st11 = lshiftbyte_m128(st11, 3);
    st12 = lshiftbyte_m128(st12, 4);
    st13 = lshiftbyte_m128(st13, 5);
    st14 = lshiftbyte_m128(st14, 6);
    st15 = lshiftbyte_m128(st15, 7);

    st8 = or128(st8, st9);
    st10 = or128(st10, st11);
    st12 = or128(st12, st13);
    st14 = or128(st14, st15);
    st8 = or128(st8, st10);
    st12 = or128(st12, st14);
    st8 = or128(st8, st12);
    *s = or128(*s, st8);

    *conf8 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf8 ^= ~0ULL;
}

static really_inline
void get_conf_stride_2(const u8 *itPtr, UNUSED const u8 *start_ptr,
                       UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
                       const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
    assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
    u64a reach0 = andn(domain_mask_flipped, itPtr);
    u64a reach2 = andn(domain_mask_flipped, itPtr + 2);
    u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
    u64a reach6 = andn(domain_mask_flipped, itPtr + 6);

    m128 st0 = load_m128_from_u64a(ft + reach0);
    m128 st2 = load_m128_from_u64a(ft + reach2);
    m128 st4 = load_m128_from_u64a(ft + reach4);
    m128 st6 = load_m128_from_u64a(ft + reach6);

    u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
    u64a reach10 = andn(domain_mask_flipped, itPtr + 10);
    u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
    u64a reach14 = andn(domain_mask_flipped, itPtr + 14);

    m128 st8 = load_m128_from_u64a(ft + reach8);
    m128 st10 = load_m128_from_u64a(ft + reach10);
    m128 st12 = load_m128_from_u64a(ft + reach12);
    m128 st14 = load_m128_from_u64a(ft + reach14);

    st2  = lshiftbyte_m128(st2, 2);
    st4  = lshiftbyte_m128(st4, 4);
    st6  = lshiftbyte_m128(st6, 6);

    *s = or128(*s, st0);
    *s = or128(*s, st2);
    *s = or128(*s, st4);
    *s = or128(*s, st6);

    *conf0 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf0 ^= ~0ULL;

    st10 = lshiftbyte_m128(st10, 2);
    st12 = lshiftbyte_m128(st12, 4);
    st14 = lshiftbyte_m128(st14, 6);

    *s = or128(*s, st8);
    *s = or128(*s, st10);
    *s = or128(*s, st12);
    *s = or128(*s, st14);

    *conf8 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf8 ^= ~0ULL;
}

static really_inline
void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr,
                       UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
                       const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
    assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
    u64a reach0 = andn(domain_mask_flipped, itPtr);
    u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
    u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
    u64a reach12 = andn(domain_mask_flipped, itPtr + 12);

    m128 st0 = load_m128_from_u64a(ft + reach0);
    m128 st4 = load_m128_from_u64a(ft + reach4);
    m128 st8 = load_m128_from_u64a(ft + reach8);
    m128 st12 = load_m128_from_u64a(ft + reach12);

    st4 = lshiftbyte_m128(st4, 4);
    st12 = lshiftbyte_m128(st12, 4);

    *s = or128(*s, st0);
    *s = or128(*s, st4);
    *conf0 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf0 ^= ~0ULL;

    *s = or128(*s, st8);
    *s = or128(*s, st12);
    *conf8 = movq(*s);
    *s = rshiftbyte_m128(*s, 8);
    *conf8 ^= ~0ULL;
}

static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
                    const u32 *confBase, const struct FDR_Runtime_Args *a,
                    const u8 *ptr, u32 *last_match_id, struct zone *z) {
    const u8 bucket = 8;

    if (likely(!*conf)) {
        return;
    }

    /* ptr is currently referring to a location in the zone's buffer, we also
     * need a pointer in the original, main buffer for the final string compare.
     */
    const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust);

    const u8 *confLoc = ptr;

    do  {
        u32 bit = findAndClearLSB_64(conf);
        u32 byte = bit / bucket + offset;
        u32 bitRem = bit % bucket;
        u32 idx = bitRem;
        u32 cf = confBase[idx];
        if (!cf) {
            continue;
        }
        const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
                                        ((const u8 *)confBase + cf);
        if (!(fdrc->groups & *control)) {
            continue;
        }
        u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
        confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
                    last_match_id, confVal, conf, bit);
    } while (unlikely(!!*conf));
}

static really_inline
void dumpZoneInfo(UNUSED struct zone *z, UNUSED size_t zone_id) {
#ifdef DEBUG
    DEBUG_PRINTF("zone: zone=%zu, bufPtr=%p\n", zone_id, z->buf);
    DEBUG_PRINTF("zone: startPtr=%p, endPtr=%p, shift=%u\n",
                 z->start, z->end, z->shift);
    DEBUG_PRINTF("zone: zone_pointer_adjust=%zd, floodPtr=%p\n",
                 z->zone_pointer_adjust, z->floodPtr);
    DEBUG_PRINTF("zone buf:");
    for (size_t i = 0; i < ZONE_TOTAL_SIZE; i++) {
        if (i % 8 == 0) {
            printf("_");
        }
        if (z->buf[i]) {
            printf("%02x", z->buf[i]);
        } else {
            printf("..");
        }
    }
    printf("\n");
#endif
};

/**
 * \brief Updates attributes for non-boundary region zone.
 */
static really_inline
void createMainZone(const u8 *flood, const u8 *begin, const u8 *end,
                    struct zone *z) {
    z->zone_pointer_adjust = 0; /* zone buffer is the main buffer */
    z->start = begin;
    z->end = end;
    z->floodPtr = flood;
    z->shift = 0;
}

/**
 * \brief Create zone for short cases (<= ITER_BYTES).
 *
 * For this case we need to copy everything into the zone's internal buffer.
 *
 * We need to ensure that we run over real data if it exists (in history or
 * before zone begin). We also need to ensure 8 bytes before any data being
 * matched can be read (to perform a conf hash).
 *
 * We also need to ensure that the data at z->end can be read.
 *
 * Hence, the zone consists of:
 *     16 bytes of history,
 *     1 - 24 bytes of data form the buffer (ending at end),
 *     1 byte of final padding
 */
static really_inline
void createShortZone(const u8 *buf, const u8 *hend, const u8 *begin,
                     const u8 *end, struct zone *z) {
    /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
     * the checks in boundary zone. */
    z->floodPtr = z->buf + ZONE_TOTAL_SIZE;

    ptrdiff_t z_len = end - begin;
    assert(z_len > 0);
    assert(z_len <= ITER_BYTES);

    z->shift = ITER_BYTES - z_len; /* ignore bytes outside region specified */

    static const size_t ZONE_SHORT_DATA_OFFSET = 16; /* after history */

    /* we are guaranteed to always have 16 initialised bytes at the end of
     * the history buffer (they may be garbage coming from the stream state
     * preceding hbuf, but bytes that don't correspond to actual history
     * shouldn't affect computations). */
    *(m128 *)z->buf = loadu128(hend - sizeof(m128));

    /* The amount of data we have to copy from main buffer. */
    size_t copy_len = MIN((size_t)(end - buf),
                          ITER_BYTES + sizeof(CONF_TYPE));

    u8 *zone_data = z->buf + ZONE_SHORT_DATA_OFFSET;
    switch (copy_len) {
    case 1:
        *zone_data = *(end - 1);
        break;
    case 2:
        *(u16 *)zone_data = unaligned_load_u16(end - 2);
        break;
    case 3:
        *(u16 *)zone_data = unaligned_load_u16(end - 3);
        *(zone_data + 2) = *(end - 1);
        break;
    case 4:
        *(u32 *)zone_data = unaligned_load_u32(end - 4);
        break;
    case 5:
    case 6:
    case 7:
        /* perform copy with 2 overlapping 4-byte chunks from buf. */
        *(u32 *)zone_data = unaligned_load_u32(end - copy_len);
        unaligned_store_u32(zone_data + copy_len - sizeof(u32),
                            unaligned_load_u32(end - sizeof(u32)));
        break;
    case 8:
        *(u64a *)zone_data = unaligned_load_u64a(end - 8);
        break;
    case 9:
    case 10:
    case 11:
    case 12:
    case 13:
    case 14:
    case 15:
        /* perform copy with 2 overlapping 8-byte chunks from buf. */
        *(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
        unaligned_store_u64a(zone_data + copy_len - sizeof(u64a),
                             unaligned_load_u64a(end - sizeof(u64a)));
        break;
    case 16:
        /* copy 16-bytes from buf. */
        *(m128 *)zone_data = loadu128(end - 16);
        break;
    default:
        assert(copy_len <= sizeof(m128) + sizeof(u64a));

        /* perform copy with (potentially overlapping) 8-byte and 16-byte chunks.
         */
        *(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
        storeu128(zone_data + copy_len - sizeof(m128),
                  loadu128(end - sizeof(m128)));
        break;
    }

    /* set the start and end location of the zone buf
     * to be scanned */
    u8 *z_end = z->buf + ZONE_SHORT_DATA_OFFSET + copy_len;
    assert(ZONE_SHORT_DATA_OFFSET + copy_len >= ITER_BYTES);

    /* copy the post-padding byte; this is required for domain > 8 due to
     * overhang */
    assert(ZONE_SHORT_DATA_OFFSET + copy_len + 3 < 64);
    *z_end = 0;

    z->end = z_end;
    z->start = z_end - ITER_BYTES;
    z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
    assert(z->start + z->shift == z_end - z_len);
}

/**
 * \brief Create a zone for the start region.
 *
 * This function requires that there is > ITER_BYTES of data in the buffer to
 * scan. The start zone itself is always responsible for scanning exactly
 * ITER_BYTES of data - there are no warmup/junk bytes scanned.
 *
 * This zone ensures that the byte at z->end can be read and corresponds to
 * the next byte of data.
 *
 * 8 bytes of history data are provided before z->start to allow proper hash
 * generation in streaming mode. If buf != begin, upto 8 bytes of data
 * prior to begin is also provided.
 *
 * Although we are not interested in bare literals which start before begin
 * if buf != begin, lookarounds associated with the literal may require
 * the data prior to begin for hash purposes.
 */
static really_inline
void createStartZone(const u8 *buf, const u8 *hend, const u8 *begin,
                     struct zone *z) {
    assert(ITER_BYTES == sizeof(m128));
    assert(sizeof(CONF_TYPE) == 8);
    static const size_t ZONE_START_BEGIN = sizeof(CONF_TYPE);

    const u8 *end = begin + ITER_BYTES;

    /* set floodPtr to the end of zone buf to avoid checks in start zone */
    z->floodPtr = z->buf + ZONE_TOTAL_SIZE;

    z->shift = 0; /* we are processing ITER_BYTES of real data */

    /* we are guaranteed to always have 16 initialised bytes at the end of the
     * history buffer (they may be garbage coming from the stream state
     * preceding hbuf, but bytes that don't correspond to actual history
     * shouldn't affect computations). However, for start zones, history is only
     * required for conf hash purposes so we only need 8 bytes */
    unaligned_store_u64a(z->buf, unaligned_load_u64a(hend - sizeof(u64a)));

    /* The amount of data we have to copy from main buffer. */
    size_t copy_len = MIN((size_t)(end - buf),
                          ITER_BYTES + sizeof(CONF_TYPE));
    assert(copy_len >= 16);

    /* copy the post-padding byte; this is required for domain > 8 due to
     * overhang. The start requires that there is data after the zone so it
     * it safe to dereference end */
    z->buf[ZONE_START_BEGIN + copy_len] = *end;

    /* set the start and end location of the zone buf to be scanned */
    u8 *z_end = z->buf + ZONE_START_BEGIN + copy_len;
    z->end = z_end;
    z->start = z_end - ITER_BYTES;

    /* copy the first 8 bytes of the valid region */
    unaligned_store_u64a(z->buf + ZONE_START_BEGIN,
                         unaligned_load_u64a(end - copy_len));

    /* copy the last 16 bytes, may overlap with the previous 8 byte write */
    storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));

    z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);

    assert(ZONE_START_BEGIN + copy_len + 3 < 64);
}

/**
 * \brief Create a zone for the end region.
 *
 * This function requires that there is > ITER_BYTES of data in the buffer to
 * scan. The end zone is responsible for a scanning the <= ITER_BYTES rump of
 * data and optional ITER_BYTES. The main zone cannot handle the last 3 bytes
 * of the buffer. The end zone is required to handle an optional full
 * ITER_BYTES from main zone when there are less than 3 bytes to scan. The
 * main zone size is reduced by ITER_BYTES in this case.
 *
 * This zone ensures that the byte at z->end can be read by filling it with a
 * padding character.
 *
 * Upto 8 bytes of data prior to begin is also provided for the purposes of
 * generating hashes. History is not copied, as all locations which require
 * history for generating a hash are the responsiblity of the start zone.
 */
static really_inline
void createEndZone(const u8 *buf, const u8 *begin, const u8 *end,
                   struct zone *z) {
    /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
     * the checks in boundary zone. */
    z->floodPtr = z->buf + ZONE_TOTAL_SIZE;

    ptrdiff_t z_len = end - begin;
    assert(z_len > 0);
    size_t iter_bytes_second = 0;
    size_t z_len_first = z_len;
    if (z_len > ITER_BYTES) {
        z_len_first = z_len - ITER_BYTES;
        iter_bytes_second = ITER_BYTES;
    }
    z->shift = ITER_BYTES - z_len_first;

    const u8 *end_first = end - iter_bytes_second;
    /* The amount of data we have to copy from main buffer for the
     * first iteration. */
    size_t copy_len_first = MIN((size_t)(end_first - buf),
                                ITER_BYTES + sizeof(CONF_TYPE));
    assert(copy_len_first >= 16);

    size_t total_copy_len = copy_len_first + iter_bytes_second;
    assert(total_copy_len + 3 < 64);

    /* copy the post-padding byte; this is required for domain > 8 due to
     * overhang */
    z->buf[total_copy_len] = 0;

    /* set the start and end location of the zone buf
     * to be scanned */
    u8 *z_end = z->buf + total_copy_len;
    z->end = z_end;
    z->start = z_end - ITER_BYTES - iter_bytes_second;
    assert(z->start + z->shift == z_end - z_len);

    u8 *z_end_first = z_end - iter_bytes_second;
    /* copy the first 8 bytes of the valid region */
    unaligned_store_u64a(z->buf,
                         unaligned_load_u64a(end_first - copy_len_first));

    /* copy the last 16 bytes, may overlap with the previous 8 byte write */
    storeu128(z_end_first - sizeof(m128), loadu128(end_first - sizeof(m128)));
    if (iter_bytes_second) {
        storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
    }

    z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
}

/**
 * \brief Prepare zones.
 *
 * This function prepares zones with actual buffer and some padded bytes.
 * The actual ITER_BYTES bytes in zone is preceded by main buf and/or
 * history buf and succeeded by padded bytes possibly from main buf,
 * if available.
 */
static really_inline
size_t prepareZones(const u8 *buf, size_t len, const u8 *hend,
                    size_t start, const u8 *flood, struct zone *zoneArr) {
    const u8 *ptr = buf + start;
    size_t remaining = len - start;

    if (remaining <= ITER_BYTES) {
        /* enough bytes to make only one zone */
        createShortZone(buf, hend, ptr, buf + len, &zoneArr[0]);
        return 1;
    }

    /* enough bytes to make more than one zone */

    size_t numZone = 0;
    createStartZone(buf, hend, ptr, &zoneArr[numZone++]);
    ptr += ITER_BYTES;

    assert(ptr < buf + len);

    /* find maximum buffer location that the main zone can scan
     * - must be a multiple of ITER_BYTES, and
     * - cannot contain the last 3 bytes (due to 3 bytes read behind the
         end of buffer in FDR main loop)
     */
    const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 3, ITER_BYTES);

    /* create a zone if multiple of ITER_BYTES are found */
    if (main_end > ptr) {
        createMainZone(flood, ptr, main_end, &zoneArr[numZone++]);
        ptr = main_end;
    }
    /* create a zone with rest of the data from the main buffer */
    createEndZone(buf, ptr, buf + len, &zoneArr[numZone++]);
    return numZone;
}

#define INVALID_MATCH_ID (~0U)

#define FDR_MAIN_LOOP(zz, s, get_conf_fn)                                   \
    do {                                                                    \
        const u8 *tryFloodDetect = zz->floodPtr;                            \
        const u8 *start_ptr = zz->start;                                    \
        const u8 *end_ptr = zz->end;                                        \
                                                                            \
        for (const u8 *itPtr = start_ptr; itPtr + ITER_BYTES <= end_ptr;    \
            itPtr += ITER_BYTES) {                                          \
            if (unlikely(itPtr > tryFloodDetect)) {                         \
                tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,\
                                             &floodBackoff, &control,       \
                                             ITER_BYTES);                   \
                if (unlikely(control == HWLM_TERMINATE_MATCHING)) {         \
                    return HWLM_TERMINATED;                                 \
                }                                                           \
            }                                                               \
            __builtin_prefetch(itPtr + ITER_BYTES);                         \
            u64a conf0;                                                     \
            u64a conf8;                                                     \
            get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_flipped,     \
                        ft, &conf0, &conf8, &s);                            \
            do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr,         \
                           &last_match_id, zz);                             \
            do_confirm_fdr(&conf8, 8, &control, confBase, a, itPtr,         \
                           &last_match_id, zz);                             \
            if (unlikely(control == HWLM_TERMINATE_MATCHING)) {             \
                return HWLM_TERMINATED;                                     \
            }                                                               \
        } /* end for loop */                                                \
    } while (0)                                                             \

static never_inline
hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
                             const struct FDR_Runtime_Args *a,
                             hwlm_group_t control) {
    assert(ISALIGNED_CL(fdr));

    u32 floodBackoff = FLOOD_BACKOFF_START;
    u32 last_match_id = INVALID_MATCH_ID;
    u32 domain_mask_flipped = ~fdr->domainMask;
    u8 stride = fdr->stride;
    const u64a *ft =
        (const u64a *)((const u8 *)fdr + ROUNDUP_CL(sizeof(struct FDR)));
    assert(ISALIGNED_CL(ft));
    const u32 *confBase = (const u32 *)((const u8 *)fdr + fdr->confOffset);
    assert(ISALIGNED_CL(confBase));
    struct zone zones[ZONE_MAX];
    assert(fdr->domain > 8 && fdr->domain < 16);

    size_t numZone = prepareZones(a->buf, a->len,
                                  a->buf_history + a->len_history,
                                  a->start_offset, a->firstFloodDetect, zones);
    assert(numZone <= ZONE_MAX);
    m128 state = getInitState(fdr, a->len_history, ft, &zones[0]);

    for (size_t curZone = 0; curZone < numZone; curZone++) {
        struct zone *z = &zones[curZone];
        dumpZoneInfo(z, curZone);

        /* When a zone contains less data than is processed in an iteration
         * of FDR_MAIN_LOOP(), we need to scan over some extra data.
         *
         * We have chosen to scan this extra data at the start of the
         * iteration. The extra data is either data we have already scanned or
         * garbage (if it is earlier than offset 0),
         *
         * As a result we need to shift the incoming state back so that it will
         * properly line up with the data being scanned.
         *
         * We also need to forbid reporting any matches in the data being
         * rescanned as they have already been reported (or are over garbage but
         * later stages should also provide that safety guarantee).
         */

        u8 shift = z->shift;

        state = variable_byte_shift_m128(state, shift);

        state = or128(state, load128(zone_or_mask[shift]));

        switch (stride) {
        case 1:
            FDR_MAIN_LOOP(z, state, get_conf_stride_1);
            break;
        case 2:
            FDR_MAIN_LOOP(z, state, get_conf_stride_2);
            break;
        case 4:
            FDR_MAIN_LOOP(z, state, get_conf_stride_4);
            break;
        default:
            break;
        }
    }

    return HWLM_SUCCESS;
}

#if defined(HAVE_AVX2)
#define ONLY_AVX2(func) func
#else
#define ONLY_AVX2(func) NULL
#endif

typedef hwlm_error_t (*FDRFUNCTYPE)(const struct FDR *fdr,
                                    const struct FDR_Runtime_Args *a,
                                    hwlm_group_t control);

static const FDRFUNCTYPE funcs[] = {
    fdr_engine_exec,
    NULL, /* old: fast teddy */
    NULL, /* old: fast teddy */
    ONLY_AVX2(fdr_exec_fat_teddy_msks1),
    ONLY_AVX2(fdr_exec_fat_teddy_msks1_pck),
    ONLY_AVX2(fdr_exec_fat_teddy_msks2),
    ONLY_AVX2(fdr_exec_fat_teddy_msks2_pck),
    ONLY_AVX2(fdr_exec_fat_teddy_msks3),
    ONLY_AVX2(fdr_exec_fat_teddy_msks3_pck),
    ONLY_AVX2(fdr_exec_fat_teddy_msks4),
    ONLY_AVX2(fdr_exec_fat_teddy_msks4_pck),
    fdr_exec_teddy_msks1,
    fdr_exec_teddy_msks1_pck,
    fdr_exec_teddy_msks2,
    fdr_exec_teddy_msks2_pck,
    fdr_exec_teddy_msks3,
    fdr_exec_teddy_msks3_pck,
    fdr_exec_teddy_msks4,
    fdr_exec_teddy_msks4_pck,
};

#define FAKE_HISTORY_SIZE 16
static const u8 fake_history[FAKE_HISTORY_SIZE];

hwlm_error_t fdrExec(const struct FDR *fdr, const u8 *buf, size_t len,
                     size_t start, HWLMCallback cb,
                     struct hs_scratch *scratch, hwlm_group_t groups) {
    // We guarantee (for safezone construction) that it is safe to read 16
    // bytes before the end of the history buffer.
    const u8 *hbuf = fake_history + FAKE_HISTORY_SIZE;

    const struct FDR_Runtime_Args a = {
        buf,
        len,
        hbuf,
        0,
        start,
        cb,
        scratch,
        nextFloodDetect(buf, len, FLOOD_BACKOFF_START),
        0
    };
    if (unlikely(a.start_offset >= a.len)) {
        return HWLM_SUCCESS;
    } else {
        assert(funcs[fdr->engineID]);
        return funcs[fdr->engineID](fdr, &a, groups);
    }
}

hwlm_error_t fdrExecStreaming(const struct FDR *fdr, const u8 *hbuf,
                              size_t hlen, const u8 *buf, size_t len,
                              size_t start, HWLMCallback cb,
                              struct hs_scratch *scratch,
                              hwlm_group_t groups) {
    struct FDR_Runtime_Args a = {
        buf,
        len,
        hbuf,
        hlen,
        start,
        cb,
        scratch,
        nextFloodDetect(buf, len, FLOOD_BACKOFF_START),
        /* we are guaranteed to always have 16 initialised bytes at the end of
         * the history buffer (they may be garbage). */
        hbuf ? unaligned_load_u64a(hbuf + hlen - sizeof(u64a)) : (u64a)0
    };

    hwlm_error_t ret;
    if (unlikely(a.start_offset >= a.len)) {
        ret = HWLM_SUCCESS;
    } else {
        assert(funcs[fdr->engineID]);
        ret = funcs[fdr->engineID](fdr, &a, groups);
    }

    return ret;
}