1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
/*
* Copyright 2017-2018 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file h3UniEdge.c
* @brief H3UniEdge functions for manipulating unidirectional edge indexes.
*/
#include <inttypes.h>
#include <stdbool.h>
#include "algos.h"
#include "constants.h"
#include "coordijk.h"
#include "geoCoord.h"
#include "h3Index.h"
#include "vertex.h"
/**
* Returns whether or not the provided H3Indexes are neighbors.
* @param origin The origin H3 index.
* @param destination The destination H3 index.
* @return 1 if the indexes are neighbors, 0 otherwise;
*/
int H3_EXPORT(h3IndexesAreNeighbors)(H3Index origin, H3Index destination) {
// Make sure they're hexagon indexes
if (H3_GET_MODE(origin) != H3_HEXAGON_MODE ||
H3_GET_MODE(destination) != H3_HEXAGON_MODE) {
return 0;
}
// Hexagons cannot be neighbors with themselves
if (origin == destination) {
return 0;
}
// Only hexagons in the same resolution can be neighbors
if (H3_GET_RESOLUTION(origin) != H3_GET_RESOLUTION(destination)) {
return 0;
}
// H3 Indexes that share the same parent are very likely to be neighbors
// Child 0 is neighbor with all of its parent's 'offspring', the other
// children are neighbors with 3 of the 7 children. So a simple comparison
// of origin and destination parents and then a lookup table of the children
// is a super-cheap way to possibly determine they are neighbors.
int parentRes = H3_GET_RESOLUTION(origin) - 1;
if (parentRes > 0 && (H3_EXPORT(h3ToParent)(origin, parentRes) ==
H3_EXPORT(h3ToParent)(destination, parentRes))) {
Direction originResDigit = H3_GET_INDEX_DIGIT(origin, parentRes + 1);
Direction destinationResDigit =
H3_GET_INDEX_DIGIT(destination, parentRes + 1);
if (originResDigit == CENTER_DIGIT ||
destinationResDigit == CENTER_DIGIT) {
return 1;
}
// These sets are the relevant neighbors in the clockwise
// and counter-clockwise
const Direction neighborSetClockwise[] = {
CENTER_DIGIT, JK_AXES_DIGIT, IJ_AXES_DIGIT, J_AXES_DIGIT,
IK_AXES_DIGIT, K_AXES_DIGIT, I_AXES_DIGIT};
const Direction neighborSetCounterclockwise[] = {
CENTER_DIGIT, IK_AXES_DIGIT, JK_AXES_DIGIT, K_AXES_DIGIT,
IJ_AXES_DIGIT, I_AXES_DIGIT, J_AXES_DIGIT};
if (neighborSetClockwise[originResDigit] == destinationResDigit ||
neighborSetCounterclockwise[originResDigit] ==
destinationResDigit) {
return 1;
}
}
// Otherwise, we have to determine the neighbor relationship the "hard" way.
H3Index neighborRing[7] = {0};
H3_EXPORT(kRing)(origin, 1, neighborRing);
for (int i = 0; i < 7; i++) {
if (neighborRing[i] == destination) {
return 1;
}
}
// Made it here, they definitely aren't neighbors
return 0;
}
/**
* Returns a unidirectional edge H3 index based on the provided origin and
* destination
* @param origin The origin H3 hexagon index
* @param destination The destination H3 hexagon index
* @return The unidirectional edge H3Index, or H3_NULL on failure.
*/
H3Index H3_EXPORT(getH3UnidirectionalEdge)(H3Index origin,
H3Index destination) {
// Short-circuit and return an invalid index value if they are not neighbors
if (H3_EXPORT(h3IndexesAreNeighbors)(origin, destination) == 0) {
return H3_NULL;
}
// Otherwise, determine the IJK direction from the origin to the destination
H3Index output = origin;
H3_SET_MODE(output, H3_UNIEDGE_MODE);
bool isPentagon = H3_EXPORT(h3IsPentagon)(origin);
// Checks each neighbor, in order, to determine which direction the
// destination neighbor is located. Skips CENTER_DIGIT since that
// would be this index.
H3Index neighbor;
// Excluding from branch coverage as we never hit the end condition
// LCOV_EXCL_BR_START
for (Direction direction = isPentagon ? J_AXES_DIGIT : K_AXES_DIGIT;
direction < NUM_DIGITS; direction++) {
// LCOV_EXCL_BR_STOP
int rotations = 0;
neighbor = h3NeighborRotations(origin, direction, &rotations);
if (neighbor == destination) {
H3_SET_RESERVED_BITS(output, direction);
return output;
}
}
// This should be impossible, return H3_NULL in this case;
return H3_NULL; // LCOV_EXCL_LINE
}
/**
* Returns the origin hexagon from the unidirectional edge H3Index
* @param edge The edge H3 index
* @return The origin H3 hexagon index, or H3_NULL on failure
*/
H3Index H3_EXPORT(getOriginH3IndexFromUnidirectionalEdge)(H3Index edge) {
if (H3_GET_MODE(edge) != H3_UNIEDGE_MODE) {
return H3_NULL;
}
H3Index origin = edge;
H3_SET_MODE(origin, H3_HEXAGON_MODE);
H3_SET_RESERVED_BITS(origin, 0);
return origin;
}
/**
* Returns the destination hexagon from the unidirectional edge H3Index
* @param edge The edge H3 index
* @return The destination H3 hexagon index, or H3_NULL on failure
*/
H3Index H3_EXPORT(getDestinationH3IndexFromUnidirectionalEdge)(H3Index edge) {
if (H3_GET_MODE(edge) != H3_UNIEDGE_MODE) {
return H3_NULL;
}
Direction direction = H3_GET_RESERVED_BITS(edge);
int rotations = 0;
H3Index destination = h3NeighborRotations(
H3_EXPORT(getOriginH3IndexFromUnidirectionalEdge)(edge), direction,
&rotations);
return destination;
}
/**
* Determines if the provided H3Index is a valid unidirectional edge index
* @param edge The unidirectional edge H3Index
* @return 1 if it is a unidirectional edge H3Index, otherwise 0.
*/
int H3_EXPORT(h3UnidirectionalEdgeIsValid)(H3Index edge) {
if (H3_GET_MODE(edge) != H3_UNIEDGE_MODE) {
return 0;
}
Direction neighborDirection = H3_GET_RESERVED_BITS(edge);
if (neighborDirection <= CENTER_DIGIT || neighborDirection >= NUM_DIGITS) {
return 0;
}
H3Index origin = H3_EXPORT(getOriginH3IndexFromUnidirectionalEdge)(edge);
if (H3_EXPORT(h3IsPentagon)(origin) && neighborDirection == K_AXES_DIGIT) {
return 0;
}
return H3_EXPORT(h3IsValid)(origin);
}
/**
* Returns the origin, destination pair of hexagon IDs for the given edge ID
* @param edge The unidirectional edge H3Index
* @param originDestination Pointer to memory to store origin and destination
* IDs
*/
void H3_EXPORT(getH3IndexesFromUnidirectionalEdge)(H3Index edge,
H3Index* originDestination) {
originDestination[0] =
H3_EXPORT(getOriginH3IndexFromUnidirectionalEdge)(edge);
originDestination[1] =
H3_EXPORT(getDestinationH3IndexFromUnidirectionalEdge)(edge);
}
/**
* Provides all of the unidirectional edges from the current H3Index.
* @param origin The origin hexagon H3Index to find edges for.
* @param edges The memory to store all of the edges inside.
*/
void H3_EXPORT(getH3UnidirectionalEdgesFromHexagon)(H3Index origin,
H3Index* edges) {
// Determine if the origin is a pentagon and special treatment needed.
int isPentagon = H3_EXPORT(h3IsPentagon)(origin);
// This is actually quite simple. Just modify the bits of the origin
// slightly for each direction, except the 'k' direction in pentagons,
// which is zeroed.
for (int i = 0; i < 6; i++) {
if (isPentagon && i == 0) {
edges[i] = H3_NULL;
} else {
edges[i] = origin;
H3_SET_MODE(edges[i], H3_UNIEDGE_MODE);
H3_SET_RESERVED_BITS(edges[i], i + 1);
}
}
}
/**
* Provides the coordinates defining the unidirectional edge.
* @param edge The unidirectional edge H3Index
* @param gb The geoboundary object to store the edge coordinates.
*/
void H3_EXPORT(getH3UnidirectionalEdgeBoundary)(H3Index edge, GeoBoundary* gb) {
// Get the origin and neighbor direction from the edge
Direction direction = H3_GET_RESERVED_BITS(edge);
H3Index origin = H3_EXPORT(getOriginH3IndexFromUnidirectionalEdge)(edge);
// Get the start vertex for the edge
int startVertex = vertexNumForDirection(origin, direction);
if (startVertex == INVALID_VERTEX_NUM) {
// This is not actually an edge (i.e. no valid direction),
// so return no vertices.
gb->numVerts = 0;
return;
}
// Get the geo boundary for the appropriate vertexes of the origin. Note
// that while there are always 2 topological vertexes per edge, the
// resulting edge boundary may have an additional distortion vertex if it
// crosses an edge of the icosahedron.
FaceIJK fijk;
_h3ToFaceIjk(origin, &fijk);
int res = H3_GET_RESOLUTION(origin);
int isPentagon = H3_EXPORT(h3IsPentagon)(origin);
if (isPentagon) {
_faceIjkPentToGeoBoundary(&fijk, res, startVertex, 2, gb);
} else {
_faceIjkToGeoBoundary(&fijk, res, startVertex, 2, gb);
}
}
|