1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
/*
* Copyright 2016-2020 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file geoCoord.c
* @brief Functions for working with lat/lon coordinates.
*/
#include "geoCoord.h"
#include <math.h>
#include <stdbool.h>
#include "constants.h"
#include "h3api.h"
/**
* Normalizes radians to a value between 0.0 and two PI.
*
* @param rads The input radians value.
* @return The normalized radians value.
*/
double _posAngleRads(double rads) {
double tmp = ((rads < 0.0L) ? rads + M_2PI : rads);
if (rads >= M_2PI) tmp -= M_2PI;
return tmp;
}
/**
* Determines if the components of two spherical coordinates are within some
* threshold distance of each other.
*
* @param p1 The first spherical coordinates.
* @param p2 The second spherical coordinates.
* @param threshold The threshold distance.
* @return Whether or not the two coordinates are within the threshold distance
* of each other.
*/
bool geoAlmostEqualThreshold(const GeoCoord *p1, const GeoCoord *p2,
double threshold) {
return fabs(p1->lat - p2->lat) < threshold &&
fabs(p1->lon - p2->lon) < threshold;
}
/**
* Determines if the components of two spherical coordinates are within our
* standard epsilon distance of each other.
*
* @param p1 The first spherical coordinates.
* @param p2 The second spherical coordinates.
* @return Whether or not the two coordinates are within the epsilon distance
* of each other.
*/
bool geoAlmostEqual(const GeoCoord *p1, const GeoCoord *p2) {
return geoAlmostEqualThreshold(p1, p2, EPSILON_RAD);
}
/**
* Set the components of spherical coordinates in decimal degrees.
*
* @param p The spherical coordinates.
* @param latDegs The desired latitude in decimal degrees.
* @param lonDegs The desired longitude in decimal degrees.
*/
void setGeoDegs(GeoCoord *p, double latDegs, double lonDegs) {
_setGeoRads(p, H3_EXPORT(degsToRads)(latDegs),
H3_EXPORT(degsToRads)(lonDegs));
}
/**
* Set the components of spherical coordinates in radians.
*
* @param p The spherical coordinates.
* @param latRads The desired latitude in decimal radians.
* @param lonRads The desired longitude in decimal radians.
*/
void _setGeoRads(GeoCoord *p, double latRads, double lonRads) {
p->lat = latRads;
p->lon = lonRads;
}
/**
* Convert from decimal degrees to radians.
*
* @param degrees The decimal degrees.
* @return The corresponding radians.
*/
double H3_EXPORT(degsToRads)(double degrees) { return degrees * M_PI_180; }
/**
* Convert from radians to decimal degrees.
*
* @param radians The radians.
* @return The corresponding decimal degrees.
*/
double H3_EXPORT(radsToDegs)(double radians) { return radians * M_180_PI; }
/**
* constrainLat makes sure latitudes are in the proper bounds
*
* @param lat The original lat value
* @return The corrected lat value
*/
double constrainLat(double lat) {
while (lat > M_PI_2) {
lat = lat - M_PI;
}
return lat;
}
/**
* constrainLng makes sure longitudes are in the proper bounds
*
* @param lng The origin lng value
* @return The corrected lng value
*/
double constrainLng(double lng) {
while (lng > M_PI) {
lng = lng - (2 * M_PI);
}
while (lng < -M_PI) {
lng = lng + (2 * M_PI);
}
return lng;
}
/**
* The great circle distance in radians between two spherical coordinates.
*
* This function uses the Haversine formula.
* For math details, see:
* https://en.wikipedia.org/wiki/Haversine_formula
* https://www.movable-type.co.uk/scripts/latlong.html
*
* @param a the first lat/lng pair (in radians)
* @param b the second lat/lng pair (in radians)
*
* @return the great circle distance in radians between a and b
*/
double H3_EXPORT(pointDistRads)(const GeoCoord *a, const GeoCoord *b) {
double sinLat = sin((b->lat - a->lat) / 2.0);
double sinLng = sin((b->lon - a->lon) / 2.0);
double A = sinLat * sinLat + cos(a->lat) * cos(b->lat) * sinLng * sinLng;
return 2 * atan2(sqrt(A), sqrt(1 - A));
}
/**
* The great circle distance in kilometers between two spherical coordinates.
*/
double H3_EXPORT(pointDistKm)(const GeoCoord *a, const GeoCoord *b) {
return H3_EXPORT(pointDistRads)(a, b) * EARTH_RADIUS_KM;
}
/**
* The great circle distance in meters between two spherical coordinates.
*/
double H3_EXPORT(pointDistM)(const GeoCoord *a, const GeoCoord *b) {
return H3_EXPORT(pointDistKm)(a, b) * 1000;
}
/**
* Determines the azimuth to p2 from p1 in radians.
*
* @param p1 The first spherical coordinates.
* @param p2 The second spherical coordinates.
* @return The azimuth in radians from p1 to p2.
*/
double _geoAzimuthRads(const GeoCoord *p1, const GeoCoord *p2) {
return atan2(cos(p2->lat) * sin(p2->lon - p1->lon),
cos(p1->lat) * sin(p2->lat) -
sin(p1->lat) * cos(p2->lat) * cos(p2->lon - p1->lon));
}
/**
* Computes the point on the sphere a specified azimuth and distance from
* another point.
*
* @param p1 The first spherical coordinates.
* @param az The desired azimuth from p1.
* @param distance The desired distance from p1, must be non-negative.
* @param p2 The spherical coordinates at the desired azimuth and distance from
* p1.
*/
void _geoAzDistanceRads(const GeoCoord *p1, double az, double distance,
GeoCoord *p2) {
if (distance < EPSILON) {
*p2 = *p1;
return;
}
double sinlat, sinlon, coslon;
az = _posAngleRads(az);
// check for due north/south azimuth
if (az < EPSILON || fabs(az - M_PI) < EPSILON) {
if (az < EPSILON) // due north
p2->lat = p1->lat + distance;
else // due south
p2->lat = p1->lat - distance;
if (fabs(p2->lat - M_PI_2) < EPSILON) // north pole
{
p2->lat = M_PI_2;
p2->lon = 0.0;
} else if (fabs(p2->lat + M_PI_2) < EPSILON) // south pole
{
p2->lat = -M_PI_2;
p2->lon = 0.0;
} else
p2->lon = constrainLng(p1->lon);
} else // not due north or south
{
sinlat = sin(p1->lat) * cos(distance) +
cos(p1->lat) * sin(distance) * cos(az);
if (sinlat > 1.0) sinlat = 1.0;
if (sinlat < -1.0) sinlat = -1.0;
p2->lat = asin(sinlat);
if (fabs(p2->lat - M_PI_2) < EPSILON) // north pole
{
p2->lat = M_PI_2;
p2->lon = 0.0;
} else if (fabs(p2->lat + M_PI_2) < EPSILON) // south pole
{
p2->lat = -M_PI_2;
p2->lon = 0.0;
} else {
sinlon = sin(az) * sin(distance) / cos(p2->lat);
coslon = (cos(distance) - sin(p1->lat) * sin(p2->lat)) /
cos(p1->lat) / cos(p2->lat);
if (sinlon > 1.0) sinlon = 1.0;
if (sinlon < -1.0) sinlon = -1.0;
if (coslon > 1.0) coslon = 1.0;
if (coslon < -1.0) coslon = -1.0;
p2->lon = constrainLng(p1->lon + atan2(sinlon, coslon));
}
}
}
/*
* The following functions provide meta information about the H3 hexagons at
* each zoom level. Since there are only 16 total levels, these are current
* handled with hardwired static values, but it may be worthwhile to put these
* static values into another file that can be autogenerated by source code in
* the future.
*/
double H3_EXPORT(hexAreaKm2)(int res) {
static const double areas[] = {
4250546.848, 607220.9782, 86745.85403, 12392.26486,
1770.323552, 252.9033645, 36.1290521, 5.1612932,
0.7373276, 0.1053325, 0.0150475, 0.0021496,
0.0003071, 0.0000439, 0.0000063, 0.0000009};
return areas[res];
}
double H3_EXPORT(hexAreaM2)(int res) {
static const double areas[] = {
4.25055E+12, 6.07221E+11, 86745854035, 12392264862,
1770323552, 252903364.5, 36129052.1, 5161293.2,
737327.6, 105332.5, 15047.5, 2149.6,
307.1, 43.9, 6.3, 0.9};
return areas[res];
}
double H3_EXPORT(edgeLengthKm)(int res) {
static const double lens[] = {
1107.712591, 418.6760055, 158.2446558, 59.81085794,
22.6063794, 8.544408276, 3.229482772, 1.220629759,
0.461354684, 0.174375668, 0.065907807, 0.024910561,
0.009415526, 0.003559893, 0.001348575, 0.000509713};
return lens[res];
}
double H3_EXPORT(edgeLengthM)(int res) {
static const double lens[] = {
1107712.591, 418676.0055, 158244.6558, 59810.85794,
22606.3794, 8544.408276, 3229.482772, 1220.629759,
461.3546837, 174.3756681, 65.90780749, 24.9105614,
9.415526211, 3.559893033, 1.348574562, 0.509713273};
return lens[res];
}
/** @brief Number of unique valid H3Indexes at given resolution. */
int64_t H3_EXPORT(numHexagons)(int res) {
/**
* Note: this *actually* returns the number of *cells*
* (which includes the 12 pentagons) at each resolution.
*
* This table comes from the recurrence:
*
* num_cells(0) = 122
* num_cells(i+1) = (num_cells(i)-12)*7 + 12*6
*
*/
static const int64_t nums[] = {122L,
842L,
5882L,
41162L,
288122L,
2016842L,
14117882L,
98825162L,
691776122L,
4842432842L,
33897029882L,
237279209162L,
1660954464122L,
11626681248842L,
81386768741882L,
569707381193162L};
return nums[res];
}
/**
* Surface area in radians^2 of spherical triangle on unit sphere.
*
* For the math, see:
* https://en.wikipedia.org/wiki/Spherical_trigonometry#Area_and_spherical_excess
*
* @param a length of triangle side A in radians
* @param b length of triangle side B in radians
* @param c length of triangle side C in radians
*
* @return area in radians^2 of triangle on unit sphere
*/
double triangleEdgeLengthsToArea(double a, double b, double c) {
double s = (a + b + c) / 2;
a = (s - a) / 2;
b = (s - b) / 2;
c = (s - c) / 2;
s = s / 2;
return 4 * atan(sqrt(tan(s) * tan(a) * tan(b) * tan(c)));
}
/**
* Compute area in radians^2 of a spherical triangle, given its vertices.
*
* @param a vertex lat/lng in radians
* @param b vertex lat/lng in radians
* @param c vertex lat/lng in radians
*
* @return area of triangle on unit sphere, in radians^2
*/
double triangleArea(const GeoCoord *a, const GeoCoord *b, const GeoCoord *c) {
return triangleEdgeLengthsToArea(H3_EXPORT(pointDistRads)(a, b),
H3_EXPORT(pointDistRads)(b, c),
H3_EXPORT(pointDistRads)(c, a));
}
/**
* Area of H3 cell in radians^2.
*
* The area is calculated by breaking the cell into spherical triangles and
* summing up their areas. Note that some H3 cells (hexagons and pentagons)
* are irregular, and have more than 6 or 5 sides.
*
* todo: optimize the computation by re-using the edges shared between triangles
*
* @param cell H3 cell
*
* @return cell area in radians^2
*/
double H3_EXPORT(cellAreaRads2)(H3Index cell) {
GeoCoord c;
GeoBoundary gb;
H3_EXPORT(h3ToGeo)(cell, &c);
H3_EXPORT(h3ToGeoBoundary)(cell, &gb);
double area = 0.0;
for (int i = 0; i < gb.numVerts; i++) {
int j = (i + 1) % gb.numVerts;
area += triangleArea(&gb.verts[i], &gb.verts[j], &c);
}
return area;
}
/**
* Area of H3 cell in kilometers^2.
*/
double H3_EXPORT(cellAreaKm2)(H3Index h) {
return H3_EXPORT(cellAreaRads2)(h) * EARTH_RADIUS_KM * EARTH_RADIUS_KM;
}
/**
* Area of H3 cell in meters^2.
*/
double H3_EXPORT(cellAreaM2)(H3Index h) {
return H3_EXPORT(cellAreaKm2)(h) * 1000 * 1000;
}
/**
* Length of a unidirectional edge in radians.
*
* @param edge H3 unidirectional edge
*
* @return length in radians
*/
double H3_EXPORT(exactEdgeLengthRads)(H3Index edge) {
GeoBoundary gb;
H3_EXPORT(getH3UnidirectionalEdgeBoundary)(edge, &gb);
double length = 0.0;
for (int i = 0; i < gb.numVerts - 1; i++) {
length += H3_EXPORT(pointDistRads)(&gb.verts[i], &gb.verts[i + 1]);
}
return length;
}
/**
* Length of a unidirectional edge in kilometers.
*/
double H3_EXPORT(exactEdgeLengthKm)(H3Index edge) {
return H3_EXPORT(exactEdgeLengthRads)(edge) * EARTH_RADIUS_KM;
}
/**
* Length of a unidirectional edge in meters.
*/
double H3_EXPORT(exactEdgeLengthM)(H3Index edge) {
return H3_EXPORT(exactEdgeLengthKm)(edge) * 1000;
}
|