1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
|
/*
* Copyright 2016-2020 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file faceijk.c
* @brief Functions for working with icosahedral face-centered hex IJK
* coordinate systems.
*/
#include "faceijk.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "constants.h"
#include "coordijk.h"
#include "geoCoord.h"
#include "h3Index.h"
#include "vec3d.h"
/** square root of 7 */
#define M_SQRT7 2.6457513110645905905016157536392604257102L
/** @brief icosahedron face centers in lat/lon radians */
const GeoCoord faceCenterGeo[NUM_ICOSA_FACES] = {
{0.803582649718989942, 1.248397419617396099}, // face 0
{1.307747883455638156, 2.536945009877921159}, // face 1
{1.054751253523952054, -1.347517358900396623}, // face 2
{0.600191595538186799, -0.450603909469755746}, // face 3
{0.491715428198773866, 0.401988202911306943}, // face 4
{0.172745327415618701, 1.678146885280433686}, // face 5
{0.605929321571350690, 2.953923329812411617}, // face 6
{0.427370518328979641, -1.888876200336285401}, // face 7
{-0.079066118549212831, -0.733429513380867741}, // face 8
{-0.230961644455383637, 0.506495587332349035}, // face 9
{0.079066118549212831, 2.408163140208925497}, // face 10
{0.230961644455383637, -2.635097066257444203}, // face 11
{-0.172745327415618701, -1.463445768309359553}, // face 12
{-0.605929321571350690, -0.187669323777381622}, // face 13
{-0.427370518328979641, 1.252716453253507838}, // face 14
{-0.600191595538186799, 2.690988744120037492}, // face 15
{-0.491715428198773866, -2.739604450678486295}, // face 16
{-0.803582649718989942, -1.893195233972397139}, // face 17
{-1.307747883455638156, -0.604647643711872080}, // face 18
{-1.054751253523952054, 1.794075294689396615}, // face 19
};
/** @brief icosahedron face centers in x/y/z on the unit sphere */
static const Vec3d faceCenterPoint[NUM_ICOSA_FACES] = {
{0.2199307791404606, 0.6583691780274996, 0.7198475378926182}, // face 0
{-0.2139234834501421, 0.1478171829550703, 0.9656017935214205}, // face 1
{0.1092625278784797, -0.4811951572873210, 0.8697775121287253}, // face 2
{0.7428567301586791, -0.3593941678278028, 0.5648005936517033}, // face 3
{0.8112534709140969, 0.3448953237639384, 0.4721387736413930}, // face 4
{-0.1055498149613921, 0.9794457296411413, 0.1718874610009365}, // face 5
{-0.8075407579970092, 0.1533552485898818, 0.5695261994882688}, // face 6
{-0.2846148069787907, -0.8644080972654206, 0.4144792552473539}, // face 7
{0.7405621473854482, -0.6673299564565524, -0.0789837646326737}, // face 8
{0.8512303986474293, 0.4722343788582681, -0.2289137388687808}, // face 9
{-0.7405621473854481, 0.6673299564565524, 0.0789837646326737}, // face 10
{-0.8512303986474292, -0.4722343788582682, 0.2289137388687808}, // face 11
{0.1055498149613919, -0.9794457296411413, -0.1718874610009365}, // face 12
{0.8075407579970092, -0.1533552485898819, -0.5695261994882688}, // face 13
{0.2846148069787908, 0.8644080972654204, -0.4144792552473539}, // face 14
{-0.7428567301586791, 0.3593941678278027, -0.5648005936517033}, // face 15
{-0.8112534709140971, -0.3448953237639382, -0.4721387736413930}, // face 16
{-0.2199307791404607, -0.6583691780274996, -0.7198475378926182}, // face 17
{0.2139234834501420, -0.1478171829550704, -0.9656017935214205}, // face 18
{-0.1092625278784796, 0.4811951572873210, -0.8697775121287253}, // face 19
};
/** @brief icosahedron face ijk axes as azimuth in radians from face center to
* vertex 0/1/2 respectively
*/
static const double faceAxesAzRadsCII[NUM_ICOSA_FACES][3] = {
{5.619958268523939882, 3.525563166130744542,
1.431168063737548730}, // face 0
{5.760339081714187279, 3.665943979320991689,
1.571548876927796127}, // face 1
{0.780213654393430055, 4.969003859179821079,
2.874608756786625655}, // face 2
{0.430469363979999913, 4.619259568766391033,
2.524864466373195467}, // face 3
{6.130269123335111400, 4.035874020941915804,
1.941478918548720291}, // face 4
{2.692877706530642877, 0.598482604137447119,
4.787272808923838195}, // face 5
{2.982963003477243874, 0.888567901084048369,
5.077358105870439581}, // face 6
{3.532912002790141181, 1.438516900396945656,
5.627307105183336758}, // face 7
{3.494305004259568154, 1.399909901866372864,
5.588700106652763840}, // face 8
{3.003214169499538391, 0.908819067106342928,
5.097609271892733906}, // face 9
{5.930472956509811562, 3.836077854116615875,
1.741682751723420374}, // face 10
{0.138378484090254847, 4.327168688876645809,
2.232773586483450311}, // face 11
{0.448714947059150361, 4.637505151845541521,
2.543110049452346120}, // face 12
{0.158629650112549365, 4.347419854898940135,
2.253024752505744869}, // face 13
{5.891865957979238535, 3.797470855586042958,
1.703075753192847583}, // face 14
{2.711123289609793325, 0.616728187216597771,
4.805518392002988683}, // face 15
{3.294508837434268316, 1.200113735041072948,
5.388903939827463911}, // face 16
{3.804819692245439833, 1.710424589852244509,
5.899214794638635174}, // face 17
{3.664438879055192436, 1.570043776661997111,
5.758833981448388027}, // face 18
{2.361378999196363184, 0.266983896803167583,
4.455774101589558636}, // face 19
};
/** @brief Definition of which faces neighbor each other. */
static const FaceOrientIJK faceNeighbors[NUM_ICOSA_FACES][4] = {
{
// face 0
{0, {0, 0, 0}, 0}, // central face
{4, {2, 0, 2}, 1}, // ij quadrant
{1, {2, 2, 0}, 5}, // ki quadrant
{5, {0, 2, 2}, 3} // jk quadrant
},
{
// face 1
{1, {0, 0, 0}, 0}, // central face
{0, {2, 0, 2}, 1}, // ij quadrant
{2, {2, 2, 0}, 5}, // ki quadrant
{6, {0, 2, 2}, 3} // jk quadrant
},
{
// face 2
{2, {0, 0, 0}, 0}, // central face
{1, {2, 0, 2}, 1}, // ij quadrant
{3, {2, 2, 0}, 5}, // ki quadrant
{7, {0, 2, 2}, 3} // jk quadrant
},
{
// face 3
{3, {0, 0, 0}, 0}, // central face
{2, {2, 0, 2}, 1}, // ij quadrant
{4, {2, 2, 0}, 5}, // ki quadrant
{8, {0, 2, 2}, 3} // jk quadrant
},
{
// face 4
{4, {0, 0, 0}, 0}, // central face
{3, {2, 0, 2}, 1}, // ij quadrant
{0, {2, 2, 0}, 5}, // ki quadrant
{9, {0, 2, 2}, 3} // jk quadrant
},
{
// face 5
{5, {0, 0, 0}, 0}, // central face
{10, {2, 2, 0}, 3}, // ij quadrant
{14, {2, 0, 2}, 3}, // ki quadrant
{0, {0, 2, 2}, 3} // jk quadrant
},
{
// face 6
{6, {0, 0, 0}, 0}, // central face
{11, {2, 2, 0}, 3}, // ij quadrant
{10, {2, 0, 2}, 3}, // ki quadrant
{1, {0, 2, 2}, 3} // jk quadrant
},
{
// face 7
{7, {0, 0, 0}, 0}, // central face
{12, {2, 2, 0}, 3}, // ij quadrant
{11, {2, 0, 2}, 3}, // ki quadrant
{2, {0, 2, 2}, 3} // jk quadrant
},
{
// face 8
{8, {0, 0, 0}, 0}, // central face
{13, {2, 2, 0}, 3}, // ij quadrant
{12, {2, 0, 2}, 3}, // ki quadrant
{3, {0, 2, 2}, 3} // jk quadrant
},
{
// face 9
{9, {0, 0, 0}, 0}, // central face
{14, {2, 2, 0}, 3}, // ij quadrant
{13, {2, 0, 2}, 3}, // ki quadrant
{4, {0, 2, 2}, 3} // jk quadrant
},
{
// face 10
{10, {0, 0, 0}, 0}, // central face
{5, {2, 2, 0}, 3}, // ij quadrant
{6, {2, 0, 2}, 3}, // ki quadrant
{15, {0, 2, 2}, 3} // jk quadrant
},
{
// face 11
{11, {0, 0, 0}, 0}, // central face
{6, {2, 2, 0}, 3}, // ij quadrant
{7, {2, 0, 2}, 3}, // ki quadrant
{16, {0, 2, 2}, 3} // jk quadrant
},
{
// face 12
{12, {0, 0, 0}, 0}, // central face
{7, {2, 2, 0}, 3}, // ij quadrant
{8, {2, 0, 2}, 3}, // ki quadrant
{17, {0, 2, 2}, 3} // jk quadrant
},
{
// face 13
{13, {0, 0, 0}, 0}, // central face
{8, {2, 2, 0}, 3}, // ij quadrant
{9, {2, 0, 2}, 3}, // ki quadrant
{18, {0, 2, 2}, 3} // jk quadrant
},
{
// face 14
{14, {0, 0, 0}, 0}, // central face
{9, {2, 2, 0}, 3}, // ij quadrant
{5, {2, 0, 2}, 3}, // ki quadrant
{19, {0, 2, 2}, 3} // jk quadrant
},
{
// face 15
{15, {0, 0, 0}, 0}, // central face
{16, {2, 0, 2}, 1}, // ij quadrant
{19, {2, 2, 0}, 5}, // ki quadrant
{10, {0, 2, 2}, 3} // jk quadrant
},
{
// face 16
{16, {0, 0, 0}, 0}, // central face
{17, {2, 0, 2}, 1}, // ij quadrant
{15, {2, 2, 0}, 5}, // ki quadrant
{11, {0, 2, 2}, 3} // jk quadrant
},
{
// face 17
{17, {0, 0, 0}, 0}, // central face
{18, {2, 0, 2}, 1}, // ij quadrant
{16, {2, 2, 0}, 5}, // ki quadrant
{12, {0, 2, 2}, 3} // jk quadrant
},
{
// face 18
{18, {0, 0, 0}, 0}, // central face
{19, {2, 0, 2}, 1}, // ij quadrant
{17, {2, 2, 0}, 5}, // ki quadrant
{13, {0, 2, 2}, 3} // jk quadrant
},
{
// face 19
{19, {0, 0, 0}, 0}, // central face
{15, {2, 0, 2}, 1}, // ij quadrant
{18, {2, 2, 0}, 5}, // ki quadrant
{14, {0, 2, 2}, 3} // jk quadrant
}};
/** @brief direction from the origin face to the destination face, relative to
* the origin face's coordinate system, or -1 if not adjacent.
*/
static const int adjacentFaceDir[NUM_ICOSA_FACES][NUM_ICOSA_FACES] = {
{0, KI, -1, -1, IJ, JK, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 0
{IJ, 0, KI, -1, -1, -1, JK, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 1
{-1, IJ, 0, KI, -1, -1, -1, JK, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 2
{-1, -1, IJ, 0, KI, -1, -1, -1, JK, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 3
{KI, -1, -1, IJ, 0, -1, -1, -1, -1, JK,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 4
{JK, -1, -1, -1, -1, 0, -1, -1, -1, -1,
IJ, -1, -1, -1, KI, -1, -1, -1, -1, -1}, // face 5
{-1, JK, -1, -1, -1, -1, 0, -1, -1, -1,
KI, IJ, -1, -1, -1, -1, -1, -1, -1, -1}, // face 6
{-1, -1, JK, -1, -1, -1, -1, 0, -1, -1,
-1, KI, IJ, -1, -1, -1, -1, -1, -1, -1}, // face 7
{-1, -1, -1, JK, -1, -1, -1, -1, 0, -1,
-1, -1, KI, IJ, -1, -1, -1, -1, -1, -1}, // face 8
{-1, -1, -1, -1, JK, -1, -1, -1, -1, 0,
-1, -1, -1, KI, IJ, -1, -1, -1, -1, -1}, // face 9
{-1, -1, -1, -1, -1, IJ, KI, -1, -1, -1,
0, -1, -1, -1, -1, JK, -1, -1, -1, -1}, // face 10
{-1, -1, -1, -1, -1, -1, IJ, KI, -1, -1,
-1, 0, -1, -1, -1, -1, JK, -1, -1, -1}, // face 11
{-1, -1, -1, -1, -1, -1, -1, IJ, KI, -1,
-1, -1, 0, -1, -1, -1, -1, JK, -1, -1}, // face 12
{-1, -1, -1, -1, -1, -1, -1, -1, IJ, KI,
-1, -1, -1, 0, -1, -1, -1, -1, JK, -1}, // face 13
{-1, -1, -1, -1, -1, KI, -1, -1, -1, IJ,
-1, -1, -1, -1, 0, -1, -1, -1, -1, JK}, // face 14
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
JK, -1, -1, -1, -1, 0, IJ, -1, -1, KI}, // face 15
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, JK, -1, -1, -1, KI, 0, IJ, -1, -1}, // face 16
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, JK, -1, -1, -1, KI, 0, IJ, -1}, // face 17
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, JK, -1, -1, -1, KI, 0, IJ}, // face 18
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, JK, IJ, -1, -1, KI, 0} // face 19
};
/** @brief overage distance table */
static const int maxDimByCIIres[] = {
2, // res 0
-1, // res 1
14, // res 2
-1, // res 3
98, // res 4
-1, // res 5
686, // res 6
-1, // res 7
4802, // res 8
-1, // res 9
33614, // res 10
-1, // res 11
235298, // res 12
-1, // res 13
1647086, // res 14
-1, // res 15
11529602 // res 16
};
/** @brief unit scale distance table */
static const int unitScaleByCIIres[] = {
1, // res 0
-1, // res 1
7, // res 2
-1, // res 3
49, // res 4
-1, // res 5
343, // res 6
-1, // res 7
2401, // res 8
-1, // res 9
16807, // res 10
-1, // res 11
117649, // res 12
-1, // res 13
823543, // res 14
-1, // res 15
5764801 // res 16
};
/**
* Encodes a coordinate on the sphere to the FaceIJK address of the containing
* cell at the specified resolution.
*
* @param g The spherical coordinates to encode.
* @param res The desired H3 resolution for the encoding.
* @param h The FaceIJK address of the containing cell at resolution res.
*/
void _geoToFaceIjk(const GeoCoord* g, int res, FaceIJK* h) {
// first convert to hex2d
Vec2d v;
_geoToHex2d(g, res, &h->face, &v);
// then convert to ijk+
_hex2dToCoordIJK(&v, &h->coord);
}
/**
* Encodes a coordinate on the sphere to the corresponding icosahedral face and
* containing 2D hex coordinates relative to that face center.
*
* @param g The spherical coordinates to encode.
* @param res The desired H3 resolution for the encoding.
* @param face The icosahedral face containing the spherical coordinates.
* @param v The 2D hex coordinates of the cell containing the point.
*/
void _geoToHex2d(const GeoCoord* g, int res, int* face, Vec2d* v) {
Vec3d v3d;
_geoToVec3d(g, &v3d);
// determine the icosahedron face
*face = 0;
double sqd = _pointSquareDist(&faceCenterPoint[0], &v3d);
for (int f = 1; f < NUM_ICOSA_FACES; f++) {
double sqdT = _pointSquareDist(&faceCenterPoint[f], &v3d);
if (sqdT < sqd) {
*face = f;
sqd = sqdT;
}
}
// cos(r) = 1 - 2 * sin^2(r/2) = 1 - 2 * (sqd / 4) = 1 - sqd/2
double r = acos(1 - sqd / 2);
if (r < EPSILON) {
v->x = v->y = 0.0L;
return;
}
// now have face and r, now find CCW theta from CII i-axis
double theta =
_posAngleRads(faceAxesAzRadsCII[*face][0] -
_posAngleRads(_geoAzimuthRads(&faceCenterGeo[*face], g)));
// adjust theta for Class III (odd resolutions)
if (isResClassIII(res)) theta = _posAngleRads(theta - M_AP7_ROT_RADS);
// perform gnomonic scaling of r
r = tan(r);
// scale for current resolution length u
r /= RES0_U_GNOMONIC;
for (int i = 0; i < res; i++) r *= M_SQRT7;
// we now have (r, theta) in hex2d with theta ccw from x-axes
// convert to local x,y
v->x = r * cos(theta);
v->y = r * sin(theta);
}
/**
* Determines the center point in spherical coordinates of a cell given by 2D
* hex coordinates on a particular icosahedral face.
*
* @param v The 2D hex coordinates of the cell.
* @param face The icosahedral face upon which the 2D hex coordinate system is
* centered.
* @param res The H3 resolution of the cell.
* @param substrate Indicates whether or not this grid is actually a substrate
* grid relative to the specified resolution.
* @param g The spherical coordinates of the cell center point.
*/
void _hex2dToGeo(const Vec2d* v, int face, int res, int substrate,
GeoCoord* g) {
// calculate (r, theta) in hex2d
double r = _v2dMag(v);
if (r < EPSILON) {
*g = faceCenterGeo[face];
return;
}
double theta = atan2(v->y, v->x);
// scale for current resolution length u
for (int i = 0; i < res; i++) r /= M_SQRT7;
// scale accordingly if this is a substrate grid
if (substrate) {
r /= 3.0;
if (isResClassIII(res)) r /= M_SQRT7;
}
r *= RES0_U_GNOMONIC;
// perform inverse gnomonic scaling of r
r = atan(r);
// adjust theta for Class III
// if a substrate grid, then it's already been adjusted for Class III
if (!substrate && isResClassIII(res))
theta = _posAngleRads(theta + M_AP7_ROT_RADS);
// find theta as an azimuth
theta = _posAngleRads(faceAxesAzRadsCII[face][0] - theta);
// now find the point at (r,theta) from the face center
_geoAzDistanceRads(&faceCenterGeo[face], theta, r, g);
}
/**
* Determines the center point in spherical coordinates of a cell given by
* a FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param g The spherical coordinates of the cell center point.
*/
void _faceIjkToGeo(const FaceIJK* h, int res, GeoCoord* g) {
Vec2d v;
_ijkToHex2d(&h->coord, &v);
_hex2dToGeo(&v, h->face, res, 0, g);
}
/**
* Generates the cell boundary in spherical coordinates for a pentagonal cell
* given by a FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the pentagonal cell.
* @param res The H3 resolution of the cell.
* @param start The first topological vertex to return.
* @param length The number of topological vertexes to return.
* @param g The spherical coordinates of the cell boundary.
*/
void _faceIjkPentToGeoBoundary(const FaceIJK* h, int res, int start, int length,
GeoBoundary* g) {
int adjRes = res;
FaceIJK centerIJK = *h;
FaceIJK fijkVerts[NUM_PENT_VERTS];
_faceIjkPentToVerts(¢erIJK, &adjRes, fijkVerts);
// If we're returning the entire loop, we need one more iteration in case
// of a distortion vertex on the last edge
int additionalIteration = length == NUM_PENT_VERTS ? 1 : 0;
// convert each vertex to lat/lon
// adjust the face of each vertex as appropriate and introduce
// edge-crossing vertices as needed
g->numVerts = 0;
FaceIJK lastFijk;
for (int vert = start; vert < start + length + additionalIteration;
vert++) {
int v = vert % NUM_PENT_VERTS;
FaceIJK fijk = fijkVerts[v];
_adjustPentVertOverage(&fijk, adjRes);
// all Class III pentagon edges cross icosa edges
// note that Class II pentagons have vertices on the edge,
// not edge intersections
if (isResClassIII(res) && vert > start) {
// find hex2d of the two vertexes on the last face
FaceIJK tmpFijk = fijk;
Vec2d orig2d0;
_ijkToHex2d(&lastFijk.coord, &orig2d0);
int currentToLastDir = adjacentFaceDir[tmpFijk.face][lastFijk.face];
const FaceOrientIJK* fijkOrient =
&faceNeighbors[tmpFijk.face][currentToLastDir];
tmpFijk.face = fijkOrient->face;
CoordIJK* ijk = &tmpFijk.coord;
// rotate and translate for adjacent face
for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk);
CoordIJK transVec = fijkOrient->translate;
_ijkScale(&transVec, unitScaleByCIIres[adjRes] * 3);
_ijkAdd(ijk, &transVec, ijk);
_ijkNormalize(ijk);
Vec2d orig2d1;
_ijkToHex2d(ijk, &orig2d1);
// find the appropriate icosa face edge vertexes
int maxDim = maxDimByCIIres[adjRes];
Vec2d v0 = {3.0 * maxDim, 0.0};
Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim};
Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim};
Vec2d* edge0;
Vec2d* edge1;
switch (adjacentFaceDir[tmpFijk.face][fijk.face]) {
case IJ:
edge0 = &v0;
edge1 = &v1;
break;
case JK:
edge0 = &v1;
edge1 = &v2;
break;
case KI:
default:
assert(adjacentFaceDir[tmpFijk.face][fijk.face] == KI);
edge0 = &v2;
edge1 = &v0;
break;
}
// find the intersection and add the lat/lon point to the result
Vec2d inter;
_v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter);
_hex2dToGeo(&inter, tmpFijk.face, adjRes, 1,
&g->verts[g->numVerts]);
g->numVerts++;
}
// convert vertex to lat/lon and add to the result
// vert == start + NUM_PENT_VERTS is only used to test for possible
// intersection on last edge
if (vert < start + NUM_PENT_VERTS) {
Vec2d vec;
_ijkToHex2d(&fijk.coord, &vec);
_hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]);
g->numVerts++;
}
lastFijk = fijk;
}
}
/**
* Get the vertices of a pentagon cell as substrate FaceIJK addresses
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell. This may be adjusted if
* necessary for the substrate grid resolution.
* @param fijkVerts Output array for the vertices
*/
void _faceIjkPentToVerts(FaceIJK* fijk, int* res, FaceIJK* fijkVerts) {
// the vertexes of an origin-centered pentagon in a Class II resolution on a
// substrate grid with aperture sequence 33r. The aperture 3 gets us the
// vertices, and the 3r gets us back to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCII[NUM_PENT_VERTS] = {
{2, 1, 0}, // 0
{1, 2, 0}, // 1
{0, 2, 1}, // 2
{0, 1, 2}, // 3
{1, 0, 2}, // 4
};
// the vertexes of an origin-centered pentagon in a Class III resolution on
// a substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
// vertices, and the 3r7r gets us to Class II. vertices listed ccw from the
// i-axes
CoordIJK vertsCIII[NUM_PENT_VERTS] = {
{5, 4, 0}, // 0
{1, 5, 0}, // 1
{0, 5, 4}, // 2
{0, 1, 5}, // 3
{4, 0, 5}, // 4
};
// get the correct set of substrate vertices for this resolution
CoordIJK* verts;
if (isResClassIII(*res))
verts = vertsCIII;
else
verts = vertsCII;
// adjust the center point to be in an aperture 33r substrate grid
// these should be composed for speed
_downAp3(&fijk->coord);
_downAp3r(&fijk->coord);
// if res is Class III we need to add a cw aperture 7 to get to
// icosahedral Class II
if (isResClassIII(*res)) {
_downAp7r(&fijk->coord);
*res += 1;
}
// The center point is now in the same substrate grid as the origin
// cell vertices. Add the center point substate coordinates
// to each vertex to translate the vertices to that cell.
for (int v = 0; v < NUM_PENT_VERTS; v++) {
fijkVerts[v].face = fijk->face;
_ijkAdd(&fijk->coord, &verts[v], &fijkVerts[v].coord);
_ijkNormalize(&fijkVerts[v].coord);
}
}
/**
* Generates the cell boundary in spherical coordinates for a cell given by a
* FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param start The first topological vertex to return.
* @param length The number of topological vertexes to return.
* @param g The spherical coordinates of the cell boundary.
*/
void _faceIjkToGeoBoundary(const FaceIJK* h, int res, int start, int length,
GeoBoundary* g) {
int adjRes = res;
FaceIJK centerIJK = *h;
FaceIJK fijkVerts[NUM_HEX_VERTS];
_faceIjkToVerts(¢erIJK, &adjRes, fijkVerts);
// If we're returning the entire loop, we need one more iteration in case
// of a distortion vertex on the last edge
int additionalIteration = length == NUM_HEX_VERTS ? 1 : 0;
// convert each vertex to lat/lon
// adjust the face of each vertex as appropriate and introduce
// edge-crossing vertices as needed
g->numVerts = 0;
int lastFace = -1;
Overage lastOverage = NO_OVERAGE;
for (int vert = start; vert < start + length + additionalIteration;
vert++) {
int v = vert % NUM_HEX_VERTS;
FaceIJK fijk = fijkVerts[v];
const int pentLeading4 = 0;
Overage overage = _adjustOverageClassII(&fijk, adjRes, pentLeading4, 1);
/*
Check for edge-crossing. Each face of the underlying icosahedron is a
different projection plane. So if an edge of the hexagon crosses an
icosahedron edge, an additional vertex must be introduced at that
intersection point. Then each half of the cell edge can be projected
to geographic coordinates using the appropriate icosahedron face
projection. Note that Class II cell edges have vertices on the face
edge, with no edge line intersections.
*/
if (isResClassIII(res) && vert > start && fijk.face != lastFace &&
lastOverage != FACE_EDGE) {
// find hex2d of the two vertexes on original face
int lastV = (v + 5) % NUM_HEX_VERTS;
Vec2d orig2d0;
_ijkToHex2d(&fijkVerts[lastV].coord, &orig2d0);
Vec2d orig2d1;
_ijkToHex2d(&fijkVerts[v].coord, &orig2d1);
// find the appropriate icosa face edge vertexes
int maxDim = maxDimByCIIres[adjRes];
Vec2d v0 = {3.0 * maxDim, 0.0};
Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim};
Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim};
int face2 = ((lastFace == centerIJK.face) ? fijk.face : lastFace);
Vec2d* edge0;
Vec2d* edge1;
switch (adjacentFaceDir[centerIJK.face][face2]) {
case IJ:
edge0 = &v0;
edge1 = &v1;
break;
case JK:
edge0 = &v1;
edge1 = &v2;
break;
// case KI:
default:
assert(adjacentFaceDir[centerIJK.face][face2] == KI);
edge0 = &v2;
edge1 = &v0;
break;
}
// find the intersection and add the lat/lon point to the result
Vec2d inter;
_v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter);
/*
If a point of intersection occurs at a hexagon vertex, then each
adjacent hexagon edge will lie completely on a single icosahedron
face, and no additional vertex is required.
*/
bool isIntersectionAtVertex =
_v2dEquals(&orig2d0, &inter) || _v2dEquals(&orig2d1, &inter);
if (!isIntersectionAtVertex) {
_hex2dToGeo(&inter, centerIJK.face, adjRes, 1,
&g->verts[g->numVerts]);
g->numVerts++;
}
}
// convert vertex to lat/lon and add to the result
// vert == start + NUM_HEX_VERTS is only used to test for possible
// intersection on last edge
if (vert < start + NUM_HEX_VERTS) {
Vec2d vec;
_ijkToHex2d(&fijk.coord, &vec);
_hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]);
g->numVerts++;
}
lastFace = fijk.face;
lastOverage = overage;
}
}
/**
* Get the vertices of a cell as substrate FaceIJK addresses
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell. This may be adjusted if
* necessary for the substrate grid resolution.
* @param fijkVerts Output array for the vertices
*/
void _faceIjkToVerts(FaceIJK* fijk, int* res, FaceIJK* fijkVerts) {
// the vertexes of an origin-centered cell in a Class II resolution on a
// substrate grid with aperture sequence 33r. The aperture 3 gets us the
// vertices, and the 3r gets us back to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCII[NUM_HEX_VERTS] = {
{2, 1, 0}, // 0
{1, 2, 0}, // 1
{0, 2, 1}, // 2
{0, 1, 2}, // 3
{1, 0, 2}, // 4
{2, 0, 1} // 5
};
// the vertexes of an origin-centered cell in a Class III resolution on a
// substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
// vertices, and the 3r7r gets us to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCIII[NUM_HEX_VERTS] = {
{5, 4, 0}, // 0
{1, 5, 0}, // 1
{0, 5, 4}, // 2
{0, 1, 5}, // 3
{4, 0, 5}, // 4
{5, 0, 1} // 5
};
// get the correct set of substrate vertices for this resolution
CoordIJK* verts;
if (isResClassIII(*res))
verts = vertsCIII;
else
verts = vertsCII;
// adjust the center point to be in an aperture 33r substrate grid
// these should be composed for speed
_downAp3(&fijk->coord);
_downAp3r(&fijk->coord);
// if res is Class III we need to add a cw aperture 7 to get to
// icosahedral Class II
if (isResClassIII(*res)) {
_downAp7r(&fijk->coord);
*res += 1;
}
// The center point is now in the same substrate grid as the origin
// cell vertices. Add the center point substate coordinates
// to each vertex to translate the vertices to that cell.
for (int v = 0; v < NUM_HEX_VERTS; v++) {
fijkVerts[v].face = fijk->face;
_ijkAdd(&fijk->coord, &verts[v], &fijkVerts[v].coord);
_ijkNormalize(&fijkVerts[v].coord);
}
}
/**
* Adjusts a FaceIJK address in place so that the resulting cell address is
* relative to the correct icosahedral face.
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param pentLeading4 Whether or not the cell is a pentagon with a leading
* digit 4.
* @param substrate Whether or not the cell is in a substrate grid.
* @return 0 if on original face (no overage); 1 if on face edge (only occurs
* on substrate grids); 2 if overage on new face interior
*/
Overage _adjustOverageClassII(FaceIJK* fijk, int res, int pentLeading4,
int substrate) {
Overage overage = NO_OVERAGE;
CoordIJK* ijk = &fijk->coord;
// get the maximum dimension value; scale if a substrate grid
int maxDim = maxDimByCIIres[res];
if (substrate) maxDim *= 3;
// check for overage
if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge
overage = FACE_EDGE;
else if (ijk->i + ijk->j + ijk->k > maxDim) // overage
{
overage = NEW_FACE;
const FaceOrientIJK* fijkOrient;
if (ijk->k > 0) {
if (ijk->j > 0) // jk "quadrant"
fijkOrient = &faceNeighbors[fijk->face][JK];
else // ik "quadrant"
{
fijkOrient = &faceNeighbors[fijk->face][KI];
// adjust for the pentagonal missing sequence
if (pentLeading4) {
// translate origin to center of pentagon
CoordIJK origin;
_setIJK(&origin, maxDim, 0, 0);
CoordIJK tmp;
_ijkSub(ijk, &origin, &tmp);
// rotate to adjust for the missing sequence
_ijkRotate60cw(&tmp);
// translate the origin back to the center of the triangle
_ijkAdd(&tmp, &origin, ijk);
}
}
} else // ij "quadrant"
fijkOrient = &faceNeighbors[fijk->face][IJ];
fijk->face = fijkOrient->face;
// rotate and translate for adjacent face
for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk);
CoordIJK transVec = fijkOrient->translate;
int unitScale = unitScaleByCIIres[res];
if (substrate) unitScale *= 3;
_ijkScale(&transVec, unitScale);
_ijkAdd(ijk, &transVec, ijk);
_ijkNormalize(ijk);
// overage points on pentagon boundaries can end up on edges
if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge
overage = FACE_EDGE;
}
return overage;
}
/**
* Adjusts a FaceIJK address for a pentagon vertex in a substrate grid in
* place so that the resulting cell address is relative to the correct
* icosahedral face.
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
*/
Overage _adjustPentVertOverage(FaceIJK* fijk, int res) {
int pentLeading4 = 0;
Overage overage;
do {
overage = _adjustOverageClassII(fijk, res, pentLeading4, 1);
} while (overage == NEW_FACE);
return overage;
}
|