1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/*
* Copyright 2016-2020 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file bbox.c
* @brief Geographic bounding box functions
*/
#include "bbox.h"
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include "constants.h"
#include "geoCoord.h"
#include "h3Index.h"
/**
* Whether the given bounding box crosses the antimeridian
* @param bbox Bounding box to inspect
* @return is transmeridian
*/
bool bboxIsTransmeridian(const BBox* bbox) { return bbox->east < bbox->west; }
/**
* Get the center of a bounding box
* @param bbox Input bounding box
* @param center Output center coordinate
*/
void bboxCenter(const BBox* bbox, GeoCoord* center) {
center->lat = (bbox->north + bbox->south) / 2.0;
// If the bbox crosses the antimeridian, shift east 360 degrees
double east = bboxIsTransmeridian(bbox) ? bbox->east + M_2PI : bbox->east;
center->lon = constrainLng((east + bbox->west) / 2.0);
}
/**
* Whether the bounding box contains a given point
* @param bbox Bounding box
* @param point Point to test
* @return Whether the point is contained
*/
bool bboxContains(const BBox* bbox, const GeoCoord* point) {
return point->lat >= bbox->south && point->lat <= bbox->north &&
(bboxIsTransmeridian(bbox) ?
// transmeridian case
(point->lon >= bbox->west || point->lon <= bbox->east)
:
// standard case
(point->lon >= bbox->west && point->lon <= bbox->east));
}
/**
* Whether two bounding boxes are strictly equal
* @param b1 Bounding box 1
* @param b2 Bounding box 2
* @return Whether the boxes are equal
*/
bool bboxEquals(const BBox* b1, const BBox* b2) {
return b1->north == b2->north && b1->south == b2->south &&
b1->east == b2->east && b1->west == b2->west;
}
/**
* _hexRadiusKm returns the radius of a given hexagon in Km
*
* @param h3Index the index of the hexagon
* @return the radius of the hexagon in Km
*/
double _hexRadiusKm(H3Index h3Index) {
// There is probably a cheaper way to determine the radius of a
// hexagon, but this way is conceptually simple
GeoCoord h3Center;
GeoBoundary h3Boundary;
H3_EXPORT(h3ToGeo)(h3Index, &h3Center);
H3_EXPORT(h3ToGeoBoundary)(h3Index, &h3Boundary);
return H3_EXPORT(pointDistKm)(&h3Center, h3Boundary.verts);
}
/**
* bboxHexEstimate returns an estimated number of hexagons that fit
* within the cartesian-projected bounding box
*
* @param bbox the bounding box to estimate the hexagon fill level
* @param res the resolution of the H3 hexagons to fill the bounding box
* @return the estimated number of hexagons to fill the bounding box
*/
int bboxHexEstimate(const BBox* bbox, int res) {
// Get the area of the pentagon as the maximally-distorted area possible
H3Index pentagons[12] = {0};
H3_EXPORT(getPentagonIndexes)(res, pentagons);
double pentagonRadiusKm = _hexRadiusKm(pentagons[0]);
// Area of a regular hexagon is 3/2*sqrt(3) * r * r
// The pentagon has the most distortion (smallest edges) and shares its
// edges with hexagons, so the most-distorted hexagons have this area,
// shrunk by 20% off chance that the bounding box perfectly bounds a
// pentagon.
double pentagonAreaKm2 =
0.8 * (2.59807621135 * pentagonRadiusKm * pentagonRadiusKm);
// Then get the area of the bounding box of the geofence in question
GeoCoord p1, p2;
p1.lat = bbox->north;
p1.lon = bbox->east;
p2.lat = bbox->south;
p2.lon = bbox->west;
double d = H3_EXPORT(pointDistKm)(&p1, &p2);
// Derived constant based on: https://math.stackexchange.com/a/1921940
// Clamped to 3 as higher values tend to rapidly drag the estimate to zero.
double a = d * d / fmin(3.0, fabs((p1.lon - p2.lon) / (p1.lat - p2.lat)));
// Divide the two to get an estimate of the number of hexagons needed
int estimate = (int)ceil(a / pentagonAreaKm2);
if (estimate == 0) estimate = 1;
return estimate;
}
/**
* lineHexEstimate returns an estimated number of hexagons that trace
* the cartesian-projected line
*
* @param origin the origin coordinates
* @param destination the destination coordinates
* @param res the resolution of the H3 hexagons to trace the line
* @return the estimated number of hexagons required to trace the line
*/
int lineHexEstimate(const GeoCoord* origin, const GeoCoord* destination,
int res) {
// Get the area of the pentagon as the maximally-distorted area possible
H3Index pentagons[12] = {0};
H3_EXPORT(getPentagonIndexes)(res, pentagons);
double pentagonRadiusKm = _hexRadiusKm(pentagons[0]);
double dist = H3_EXPORT(pointDistKm)(origin, destination);
int estimate = (int)ceil(dist / (2 * pentagonRadiusKm));
if (estimate == 0) estimate = 1;
return estimate;
}
|