1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
|
/*
* Copyright 2021 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_FLATBUFFER_BUILDER_H_
#define FLATBUFFERS_FLATBUFFER_BUILDER_H_
#include <algorithm>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <type_traits>
#include "allocator.h"
#include "array.h"
#include "base.h"
#include "buffer.h"
#include "buffer_ref.h"
#include "default_allocator.h"
#include "detached_buffer.h"
#include "stl_emulation.h"
#include "string.h"
#include "struct.h"
#include "table.h"
#include "vector.h"
#include "vector_downward.h"
#include "verifier.h"
namespace flatbuffers {
// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
// Should correspond to what EndTable() below builds up.
const voffset_t fixed_fields =
2 * sizeof(voffset_t); // Vtable size and Object Size.
size_t offset = fixed_fields + field_id * sizeof(voffset_t);
FLATBUFFERS_ASSERT(offset < std::numeric_limits<voffset_t>::max());
return static_cast<voffset_t>(offset);}
template<typename T, typename Alloc = std::allocator<T>>
const T *data(const std::vector<T, Alloc> &v) {
// Eventually the returned pointer gets passed down to memcpy, so
// we need it to be non-null to avoid undefined behavior.
static uint8_t t;
return v.empty() ? reinterpret_cast<const T *>(&t) : &v.front();
}
template<typename T, typename Alloc = std::allocator<T>>
T *data(std::vector<T, Alloc> &v) {
// Eventually the returned pointer gets passed down to memcpy, so
// we need it to be non-null to avoid undefined behavior.
static uint8_t t;
return v.empty() ? reinterpret_cast<T *>(&t) : &v.front();
}
/// @addtogroup flatbuffers_cpp_api
/// @{
/// @class FlatBufferBuilder
/// @brief Helper class to hold data needed in creation of a FlatBuffer.
/// To serialize data, you typically call one of the `Create*()` functions in
/// the generated code, which in turn call a sequence of `StartTable`/
/// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
/// `CreateVector` functions. Do this is depth-first order to build up a tree to
/// the root. `Finish()` wraps up the buffer ready for transport.
template<bool Is64Aware = false> class FlatBufferBuilderImpl {
public:
// This switches the size type of the builder, based on if its 64-bit aware
// (uoffset64_t) or not (uoffset_t).
typedef
typename std::conditional<Is64Aware, uoffset64_t, uoffset_t>::type SizeT;
/// @brief Default constructor for FlatBufferBuilder.
/// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
/// to `1024`.
/// @param[in] allocator An `Allocator` to use. If null will use
/// `DefaultAllocator`.
/// @param[in] own_allocator Whether the builder/vector should own the
/// allocator. Defaults to / `false`.
/// @param[in] buffer_minalign Force the buffer to be aligned to the given
/// minimum alignment upon reallocation. Only needed if you intend to store
/// types with custom alignment AND you wish to read the buffer in-place
/// directly after creation.
explicit FlatBufferBuilderImpl(
size_t initial_size = 1024, Allocator *allocator = nullptr,
bool own_allocator = false,
size_t buffer_minalign = AlignOf<largest_scalar_t>())
: buf_(initial_size, allocator, own_allocator, buffer_minalign,
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
force_defaults_(false),
dedup_vtables_(true),
string_pool(nullptr) {
EndianCheck();
}
/// @brief Move constructor for FlatBufferBuilder.
FlatBufferBuilderImpl(FlatBufferBuilderImpl &&other) noexcept
: buf_(1024, nullptr, false, AlignOf<largest_scalar_t>(),
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
force_defaults_(false),
dedup_vtables_(true),
string_pool(nullptr) {
EndianCheck();
// Default construct and swap idiom.
// Lack of delegating constructors in vs2010 makes it more verbose than
// needed.
Swap(other);
}
/// @brief Move assignment operator for FlatBufferBuilder.
FlatBufferBuilderImpl &operator=(FlatBufferBuilderImpl &&other) noexcept {
// Move construct a temporary and swap idiom
FlatBufferBuilderImpl temp(std::move(other));
Swap(temp);
return *this;
}
void Swap(FlatBufferBuilderImpl &other) {
using std::swap;
buf_.swap(other.buf_);
swap(num_field_loc, other.num_field_loc);
swap(max_voffset_, other.max_voffset_);
swap(length_of_64_bit_region_, other.length_of_64_bit_region_);
swap(nested, other.nested);
swap(finished, other.finished);
swap(minalign_, other.minalign_);
swap(force_defaults_, other.force_defaults_);
swap(dedup_vtables_, other.dedup_vtables_);
swap(string_pool, other.string_pool);
}
~FlatBufferBuilderImpl() {
if (string_pool) delete string_pool;
}
void Reset() {
Clear(); // clear builder state
buf_.reset(); // deallocate buffer
}
/// @brief Reset all the state in this FlatBufferBuilder so it can be reused
/// to construct another buffer.
void Clear() {
ClearOffsets();
buf_.clear();
nested = false;
finished = false;
minalign_ = 1;
length_of_64_bit_region_ = 0;
if (string_pool) string_pool->clear();
}
/// @brief The current size of the serialized buffer, counting from the end.
/// @return Returns an `SizeT` with the current size of the buffer.
SizeT GetSize() const { return buf_.size(); }
/// @brief The current size of the serialized buffer relative to the end of
/// the 32-bit region.
/// @return Returns an `uoffset_t` with the current size of the buffer.
template<bool is_64 = Is64Aware>
// Only enable this method for the 64-bit builder, as only that builder is
// concerned with the 32/64-bit boundary, and should be the one to bare any
// run time costs.
typename std::enable_if<is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
//[32-bit region][64-bit region]
// [XXXXXXXXXXXXXXXXXXX] GetSize()
// [YYYYYYYYYYYYY] length_of_64_bit_region_
// [ZZZZ] return size
return static_cast<uoffset_t>(GetSize() - length_of_64_bit_region_);
}
template<bool is_64 = Is64Aware>
// Only enable this method for the 32-bit builder.
typename std::enable_if<!is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
return static_cast<uoffset_t>(GetSize());
}
/// @brief Get the serialized buffer (after you call `Finish()`).
/// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
/// buffer.
uint8_t *GetBufferPointer() const {
Finished();
return buf_.data();
}
/// @brief Get the serialized buffer (after you call `Finish()`) as a span.
/// @return Returns a constructed flatbuffers::span that is a view over the
/// FlatBuffer data inside the buffer.
flatbuffers::span<uint8_t> GetBufferSpan() const {
Finished();
return flatbuffers::span<uint8_t>(buf_.data(), buf_.size());
}
/// @brief Get a pointer to an unfinished buffer.
/// @return Returns a `uint8_t` pointer to the unfinished buffer.
uint8_t *GetCurrentBufferPointer() const { return buf_.data(); }
/// @brief Get the released DetachedBuffer.
/// @return A `DetachedBuffer` that owns the buffer and its allocator.
DetachedBuffer Release() {
Finished();
DetachedBuffer buffer = buf_.release();
Clear();
return buffer;
}
/// @brief Get the released pointer to the serialized buffer.
/// @param size The size of the memory block containing
/// the serialized `FlatBuffer`.
/// @param offset The offset from the released pointer where the finished
/// `FlatBuffer` starts.
/// @return A raw pointer to the start of the memory block containing
/// the serialized `FlatBuffer`.
/// @remark If the allocator is owned, it gets deleted when the destructor is
/// called.
uint8_t *ReleaseRaw(size_t &size, size_t &offset) {
Finished();
uint8_t* raw = buf_.release_raw(size, offset);
Clear();
return raw;
}
/// @brief get the minimum alignment this buffer needs to be accessed
/// properly. This is only known once all elements have been written (after
/// you call Finish()). You can use this information if you need to embed
/// a FlatBuffer in some other buffer, such that you can later read it
/// without first having to copy it into its own buffer.
size_t GetBufferMinAlignment() const {
Finished();
return minalign_;
}
/// @cond FLATBUFFERS_INTERNAL
void Finished() const {
// If you get this assert, you're attempting to get access a buffer
// which hasn't been finished yet. Be sure to call
// FlatBufferBuilder::Finish with your root table.
// If you really need to access an unfinished buffer, call
// GetCurrentBufferPointer instead.
FLATBUFFERS_ASSERT(finished);
}
/// @endcond
/// @brief In order to save space, fields that are set to their default value
/// don't get serialized into the buffer.
/// @param[in] fd When set to `true`, always serializes default values that
/// are set. Optional fields which are not set explicitly, will still not be
/// serialized.
void ForceDefaults(bool fd) { force_defaults_ = fd; }
/// @brief By default vtables are deduped in order to save space.
/// @param[in] dedup When set to `true`, dedup vtables.
void DedupVtables(bool dedup) { dedup_vtables_ = dedup; }
/// @cond FLATBUFFERS_INTERNAL
void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
void TrackMinAlign(size_t elem_size) {
if (elem_size > minalign_) minalign_ = elem_size;
}
void Align(size_t elem_size) {
TrackMinAlign(elem_size);
buf_.fill(PaddingBytes(buf_.size(), elem_size));
}
void PushFlatBuffer(const uint8_t *bytes, size_t size) {
PushBytes(bytes, size);
finished = true;
}
void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); }
void PopBytes(size_t amount) { buf_.pop(amount); }
template<typename T> void AssertScalarT() {
// The code assumes power of 2 sizes and endian-swap-ability.
static_assert(flatbuffers::is_scalar<T>::value, "T must be a scalar type");
}
// Write a single aligned scalar to the buffer
template<typename T, typename ReturnT = uoffset_t>
ReturnT PushElement(T element) {
AssertScalarT<T>();
Align(sizeof(T));
buf_.push_small(EndianScalar(element));
return CalculateOffset<ReturnT>();
}
template<typename T, template<typename> class OffsetT = Offset>
uoffset_t PushElement(OffsetT<T> off) {
// Special case for offsets: see ReferTo below.
return PushElement(ReferTo(off.o));
}
// When writing fields, we track where they are, so we can create correct
// vtables later.
void TrackField(voffset_t field, uoffset_t off) {
FieldLoc fl = { off, field };
buf_.scratch_push_small(fl);
num_field_loc++;
if (field > max_voffset_) { max_voffset_ = field; }
}
// Like PushElement, but additionally tracks the field this represents.
template<typename T> void AddElement(voffset_t field, T e, T def) {
// We don't serialize values equal to the default.
if (IsTheSameAs(e, def) && !force_defaults_) return;
TrackField(field, PushElement(e));
}
template<typename T> void AddElement(voffset_t field, T e) {
TrackField(field, PushElement(e));
}
template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
if (off.IsNull()) return; // Don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
}
template<typename T> void AddOffset(voffset_t field, Offset64<T> off) {
if (off.IsNull()) return; // Don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset64_t>(0));
}
template<typename T> void AddStruct(voffset_t field, const T *structptr) {
if (!structptr) return; // Default, don't store.
Align(AlignOf<T>());
buf_.push_small(*structptr);
TrackField(field, CalculateOffset<uoffset_t>());
}
void AddStructOffset(voffset_t field, uoffset_t off) {
TrackField(field, off);
}
// Offsets initially are relative to the end of the buffer (downwards).
// This function converts them to be relative to the current location
// in the buffer (when stored here), pointing upwards.
uoffset_t ReferTo(uoffset_t off) {
// Align to ensure GetSizeRelative32BitRegion() below is correct.
Align(sizeof(uoffset_t));
// 32-bit offsets are relative to the tail of the 32-bit region of the
// buffer. For most cases (without 64-bit entities) this is equivalent to
// size of the whole buffer (e.g. GetSize())
return ReferTo(off, GetSizeRelative32BitRegion());
}
uoffset64_t ReferTo(uoffset64_t off) {
// Align to ensure GetSize() below is correct.
Align(sizeof(uoffset64_t));
// 64-bit offsets are relative to tail of the whole buffer
return ReferTo(off, GetSize());
}
template<typename T, typename T2> T ReferTo(const T off, const T2 size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<T>(sizeof(T));
}
template<typename T> T ReferTo(const T off, const T size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<T>(sizeof(T));
}
void NotNested() {
// If you hit this, you're trying to construct a Table/Vector/String
// during the construction of its parent table (between the MyTableBuilder
// and table.Finish().
// Move the creation of these sub-objects to above the MyTableBuilder to
// not get this assert.
// Ignoring this assert may appear to work in simple cases, but the reason
// it is here is that storing objects in-line may cause vtable offsets
// to not fit anymore. It also leads to vtable duplication.
FLATBUFFERS_ASSERT(!nested);
// If you hit this, fields were added outside the scope of a table.
FLATBUFFERS_ASSERT(!num_field_loc);
}
// From generated code (or from the parser), we call StartTable/EndTable
// with a sequence of AddElement calls in between.
uoffset_t StartTable() {
NotNested();
nested = true;
return GetSizeRelative32BitRegion();
}
// This finishes one serialized object by generating the vtable if it's a
// table, comparing it against existing vtables, and writing the
// resulting vtable offset.
uoffset_t EndTable(uoffset_t start) {
// If you get this assert, a corresponding StartTable wasn't called.
FLATBUFFERS_ASSERT(nested);
// Write the vtable offset, which is the start of any Table.
// We fill its value later.
// This is relative to the end of the 32-bit region.
const uoffset_t vtable_offset_loc =
static_cast<uoffset_t>(PushElement<soffset_t>(0));
// Write a vtable, which consists entirely of voffset_t elements.
// It starts with the number of offsets, followed by a type id, followed
// by the offsets themselves. In reverse:
// Include space for the last offset and ensure empty tables have a
// minimum size.
max_voffset_ =
(std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)),
FieldIndexToOffset(0));
buf_.fill_big(max_voffset_);
const uoffset_t table_object_size = vtable_offset_loc - start;
// Vtable use 16bit offsets.
FLATBUFFERS_ASSERT(table_object_size < 0x10000);
WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t),
static_cast<voffset_t>(table_object_size));
WriteScalar<voffset_t>(buf_.data(), max_voffset_);
// Write the offsets into the table
for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc);
it < buf_.scratch_end(); it += sizeof(FieldLoc)) {
auto field_location = reinterpret_cast<FieldLoc *>(it);
const voffset_t pos =
static_cast<voffset_t>(vtable_offset_loc - field_location->off);
// If this asserts, it means you've set a field twice.
FLATBUFFERS_ASSERT(
!ReadScalar<voffset_t>(buf_.data() + field_location->id));
WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
}
ClearOffsets();
auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
auto vt1_size = ReadScalar<voffset_t>(vt1);
auto vt_use = GetSizeRelative32BitRegion();
// See if we already have generated a vtable with this exact same
// layout before. If so, make it point to the old one, remove this one.
if (dedup_vtables_) {
for (auto it = buf_.scratch_data(); it < buf_.scratch_end();
it += sizeof(uoffset_t)) {
auto vt_offset_ptr = reinterpret_cast<uoffset_t *>(it);
auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*vt_offset_ptr));
auto vt2_size = ReadScalar<voffset_t>(vt2);
if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue;
vt_use = *vt_offset_ptr;
buf_.pop(GetSizeRelative32BitRegion() - vtable_offset_loc);
break;
}
}
// If this is a new vtable, remember it.
if (vt_use == GetSizeRelative32BitRegion()) {
buf_.scratch_push_small(vt_use);
}
// Fill the vtable offset we created above.
// The offset points from the beginning of the object to where the vtable is
// stored.
// Offsets default direction is downward in memory for future format
// flexibility (storing all vtables at the start of the file).
WriteScalar(buf_.data_at(vtable_offset_loc + length_of_64_bit_region_),
static_cast<soffset_t>(vt_use) -
static_cast<soffset_t>(vtable_offset_loc));
nested = false;
return vtable_offset_loc;
}
FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]])
uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) {
return EndTable(start);
}
// This checks a required field has been set in a given table that has
// just been constructed.
template<typename T> void Required(Offset<T> table, voffset_t field) {
auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
// If this fails, the caller will show what field needs to be set.
FLATBUFFERS_ASSERT(ok);
(void)ok;
}
uoffset_t StartStruct(size_t alignment) {
Align(alignment);
return GetSizeRelative32BitRegion();
}
uoffset_t EndStruct() { return GetSizeRelative32BitRegion(); }
void ClearOffsets() {
buf_.scratch_pop(num_field_loc * sizeof(FieldLoc));
num_field_loc = 0;
max_voffset_ = 0;
}
// Aligns such that when "len" bytes are written, an object can be written
// after it (forward in the buffer) with "alignment" without padding.
void PreAlign(size_t len, size_t alignment) {
if (len == 0) return;
TrackMinAlign(alignment);
buf_.fill(PaddingBytes(GetSize() + len, alignment));
}
// Aligns such than when "len" bytes are written, an object of type `AlignT`
// can be written after it (forward in the buffer) without padding.
template<typename AlignT> void PreAlign(size_t len) {
AssertScalarT<AlignT>();
PreAlign(len, AlignOf<AlignT>());
}
/// @endcond
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str, size_t len) {
CreateStringImpl(str, len);
return OffsetT<String>(
CalculateOffset<typename OffsetT<String>::offset_type>());
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const std::string &str) {
return CreateString<OffsetT>(str.c_str(), str.length());
}
// clang-format off
#ifdef FLATBUFFERS_HAS_STRING_VIEW
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const string_view to copy in to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template <typename> class OffsetT = Offset>
OffsetT<String>CreateString(flatbuffers::string_view str) {
return CreateString<OffsetT>(str.data(), str.size());
}
#endif // FLATBUFFERS_HAS_STRING_VIEW
// clang-format on
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const String *str) {
return str ? CreateString<OffsetT>(str->c_str(), str->size()) : 0;
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string like type with support
/// of T::data() and T::length() to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset,
// No need to explicitly declare the T type, let the compiler deduce
// it.
int &...ExplicitArgumentBarrier, typename T>
OffsetT<String> CreateString(const T &str) {
return CreateString<OffsetT>(str.data(), str.length());
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const char *str, size_t len) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
if (!string_pool) {
string_pool = new StringOffsetMap(StringOffsetCompare(buf_));
}
const size_t size_before_string = buf_.size();
// Must first serialize the string, since the set is all offsets into
// buffer.
const Offset<String> off = CreateString<Offset>(str, len);
auto it = string_pool->find(off);
// If it exists we reuse existing serialized data!
if (it != string_pool->end()) {
// We can remove the string we serialized.
buf_.pop(buf_.size() - size_before_string);
return *it;
}
// Record this string for future use.
string_pool->insert(off);
return off;
}
#ifdef FLATBUFFERS_HAS_STRING_VIEW
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const std::string_view to store in the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateSharedString(const flatbuffers::string_view str) {
return CreateSharedString(str.data(), str.size());
}
#else
/// @brief Store a string in the buffer, which null-terminated.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const char *str) {
return CreateSharedString(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const std::string &str) {
return CreateSharedString(str.c_str(), str.length());
}
#endif
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateSharedString(const String *str) {
return str ? CreateSharedString(str->c_str(), str->size()) : 0;
}
/// @cond FLATBUFFERS_INTERNAL
template<typename LenT = uoffset_t, typename ReturnT = uoffset_t>
ReturnT EndVector(size_t len) {
FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector.
nested = false;
return PushElement<LenT, ReturnT>(static_cast<LenT>(len));
}
template<template<typename> class OffsetT = Offset, typename LenT = uint32_t>
void StartVector(size_t len, size_t elemsize, size_t alignment) {
NotNested();
nested = true;
// Align to the Length type of the vector (either 32-bit or 64-bit), so
// that the length of the buffer can be added without padding.
PreAlign<LenT>(len * elemsize);
PreAlign(len * elemsize, alignment); // Just in case elemsize > uoffset_t.
}
template<typename T, template<typename> class OffsetT = Offset,
typename LenT = uint32_t>
void StartVector(size_t len) {
return StartVector<OffsetT, LenT>(len, sizeof(T), AlignOf<T>());
}
// Call this right before StartVector/CreateVector if you want to force the
// alignment to be something different than what the element size would
// normally dictate.
// This is useful when storing a nested_flatbuffer in a vector of bytes,
// or when storing SIMD floats, etc.
void ForceVectorAlignment(const size_t len, const size_t elemsize,
const size_t alignment) {
if (len == 0) return;
FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment));
PreAlign(len * elemsize, alignment);
}
template<bool is_64 = Is64Aware>
typename std::enable_if<is_64, void>::type ForceVectorAlignment64(
const size_t len, const size_t elemsize, const size_t alignment) {
// If you hit this assertion, you are trying to force alignment on a
// vector with offset64 after serializing a 32-bit offset.
FLATBUFFERS_ASSERT(GetSize() == length_of_64_bit_region_);
// Call through.
ForceVectorAlignment(len, elemsize, alignment);
// Update the 64 bit region.
length_of_64_bit_region_ = GetSize();
}
// Similar to ForceVectorAlignment but for String fields.
void ForceStringAlignment(size_t len, size_t alignment) {
if (len == 0) return;
FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment));
PreAlign((len + 1) * sizeof(char), alignment);
}
/// @endcond
/// @brief Serialize an array into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @tparam OffsetT the type of offset to return
/// @tparam VectorT the type of vector to cast to.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `TOffset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector>
OffsetT<VectorT<T>> CreateVector(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<T>>::offset_type offset_type;
// If this assert hits, you're specifying a template argument that is
// causing the wrong overload to be selected, remove it.
AssertScalarT<T>();
StartVector<T, OffsetT, LenT>(len);
if (len > 0) {
// clang-format off
#if FLATBUFFERS_LITTLEENDIAN
PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
#else
if (sizeof(T) == 1) {
PushBytes(reinterpret_cast<const uint8_t *>(v), len);
} else {
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
}
}
#endif
// clang-format on
}
return OffsetT<VectorT<T>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array like object into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @tparam C The type of the array.
/// @param[in] array A reference to an array like object of type `T` to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, class C> Offset<Vector<T>> CreateVector(const C &array) {
return CreateVector(array.data(), array.size());
}
/// @brief Serialize an initializer list into a FlatBuffer `vector`.
/// @tparam T The data type of the initializer list elements.
/// @param[in] v The value of the initializer list.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<T>> CreateVector(std::initializer_list<T> v) {
return CreateVector(v.begin(), v.size());
}
template<typename T>
Offset<Vector<Offset<T>>> CreateVector(const Offset<T> *v, size_t len) {
StartVector<Offset<T>>(len);
for (auto i = len; i > 0;) { PushElement(v[--i]); }
return Offset<Vector<Offset<T>>>(EndVector(len));
}
/// @brief Serialize a `std::vector` into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` elements.
/// @param v A const reference to the `std::vector` to serialize into the
/// buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<T>> CreateVector(const std::vector<T, Alloc> &v) {
return CreateVector(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64,
int &...ExplicitArgumentBarrier, typename T>
Offset64<VectorT<T>> CreateVector64(const std::vector<T> &v) {
return CreateVector<T, Offset64, VectorT>(data(v), v.size());
}
// vector<bool> may be implemented using a bit-set, so we can't access it as
// an array. Instead, read elements manually.
// Background: https://isocpp.org/blog/2012/11/on-vectorbool
Offset<Vector<uint8_t>> CreateVector(const std::vector<bool> &v) {
StartVector<uint8_t>(v.size());
for (auto i = v.size(); i > 0;) {
PushElement(static_cast<uint8_t>(v[--i]));
}
return Offset<Vector<uint8_t>>(EndVector(v.size()));
}
/// @brief Serialize values returned by a function into a FlatBuffer `vector`.
/// This is a convenience function that takes care of iteration for you.
/// @tparam T The data type of the `std::vector` elements.
/// @param f A function that takes the current iteration 0..vector_size-1 and
/// returns any type that you can construct a FlatBuffers vector out of.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<T>> CreateVector(size_t vector_size,
const std::function<T(size_t i)> &f) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
std::vector<T> elems(vector_size);
for (size_t i = 0; i < vector_size; i++) elems[i] = f(i);
return CreateVector(elems);
}
/// @brief Serialize values returned by a function into a FlatBuffer `vector`.
/// This is a convenience function that takes care of iteration for you. This
/// uses a vector stored on the heap to store the intermediate results of the
/// iteration.
/// @tparam T The data type of the `std::vector` elements.
/// @param f A function that takes the current iteration 0..vector_size-1,
/// and the state parameter returning any type that you can construct a
/// FlatBuffers vector out of.
/// @param state State passed to f.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename F, typename S>
Offset<Vector<T>> CreateVector(size_t vector_size, F f, S *state) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
std::vector<T> elems(vector_size);
for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state);
return CreateVector(elems);
}
/// @brief Serialize a `std::vector<StringType>` into a FlatBuffer `vector`.
/// whereas StringType is any type that is accepted by the CreateString()
/// overloads.
/// This is a convenience function for a common case.
/// @param v A const reference to the `std::vector` to serialize into the
/// buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename StringType = std::string,
typename Alloc = std::allocator<StringType>>
Offset<Vector<Offset<String>>> CreateVectorOfStrings(
const std::vector<StringType, Alloc> &v) {
return CreateVectorOfStrings(v.cbegin(), v.cend());
}
/// @brief Serialize a collection of Strings into a FlatBuffer `vector`.
/// This is a convenience function for a common case.
/// @param begin The beginning iterator of the collection
/// @param end The ending iterator of the collection
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<class It>
Offset<Vector<Offset<String>>> CreateVectorOfStrings(It begin, It end) {
auto distance = std::distance(begin, end);
FLATBUFFERS_ASSERT(distance >= 0);
auto size = static_cast<size_t>(distance);
auto scratch_buffer_usage = size * sizeof(Offset<String>);
// If there is not enough space to store the offsets, there definitely won't
// be enough space to store all the strings. So ensuring space for the
// scratch region is OK, for if it fails, it would have failed later.
buf_.ensure_space(scratch_buffer_usage);
for (auto it = begin; it != end; ++it) {
buf_.scratch_push_small(CreateString(*it));
}
StartVector<Offset<String>>(size);
for (size_t i = 1; i <= size; i++) {
// Note we re-evaluate the buf location each iteration to account for any
// underlying buffer resizing that may occur.
PushElement(*reinterpret_cast<Offset<String> *>(
buf_.scratch_end() - i * sizeof(Offset<String>)));
}
buf_.scratch_pop(scratch_buffer_usage);
return Offset<Vector<Offset<String>>>(EndVector(size));
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<const T *>>::offset_type offset_type;
StartVector<OffsetT, LenT>(len, sizeof(T), AlignOf<T>());
if (len > 0) {
PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
}
return OffsetT<VectorT<const T *>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] filler A function that takes the current iteration
/// 0..vector_size-1 and a pointer to the struct that must be filled.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
/// This is mostly useful when flatbuffers are generated with mutation
/// accessors.
template<typename T>
Offset<Vector<const T *>> CreateVectorOfStructs(
size_t vector_size, const std::function<void(size_t i, T *)> &filler) {
T *structs = StartVectorOfStructs<T>(vector_size);
for (size_t i = 0; i < vector_size; i++) {
filler(i, structs);
structs++;
}
return EndVectorOfStructs<T>(vector_size);
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] f A function that takes the current iteration 0..vector_size-1,
/// a pointer to the struct that must be filled and the state argument.
/// @param[in] state Arbitrary state to pass to f.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
/// This is mostly useful when flatbuffers are generated with mutation
/// accessors.
template<typename T, typename F, typename S>
Offset<Vector<const T *>> CreateVectorOfStructs(size_t vector_size, F f,
S *state) {
T *structs = StartVectorOfStructs<T>(vector_size);
for (size_t i = 0; i < vector_size; i++) {
f(i, structs, state);
structs++;
}
return EndVectorOfStructs<T>(vector_size);
}
/// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector,
typename Alloc = std::allocator<T>>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(
const std::vector<T, Alloc> &v) {
return CreateVectorOfStructs<T, OffsetT, VectorT>(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64, int &..., typename T>
Offset64<VectorT<const T *>> CreateVectorOfStructs64(
const std::vector<T> &v) {
return CreateVectorOfStructs<T, Offset64, VectorT>(data(v), v.size());
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const S *v, size_t len, T (*const pack_func)(const S &)) {
FLATBUFFERS_ASSERT(pack_func);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = pack_func(v[i]); }
return EndVectorOfStructs<T>(len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
size_t len) {
extern T Pack(const S &);
return CreateVectorOfNativeStructs(v, len, Pack);
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const std::vector<S, Alloc> &v, T (*const pack_func)(const S &)) {
return CreateVectorOfNativeStructs<T, S>(data(v), v.size(), pack_func);
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<S>>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const std::vector<S, Alloc> &v) {
return CreateVectorOfNativeStructs<T, S>(data(v), v.size());
}
/// @cond FLATBUFFERS_INTERNAL
template<typename T> struct StructKeyComparator {
bool operator()(const T &a, const T &b) const {
return a.KeyCompareLessThan(&b);
}
};
/// @endcond
/// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`
/// in sorted order.
/// @tparam T The data type of the `std::vector` struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfSortedStructs(
std::vector<T, Alloc> *v) {
return CreateVectorOfSortedStructs(data(*v), v->size());
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector` in sorted order.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(
std::vector<S, Alloc> *v) {
return CreateVectorOfSortedNativeStructs<T, S>(data(*v), v->size());
}
/// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted
/// order.
/// @tparam T The data type of the struct array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<const T *>> CreateVectorOfSortedStructs(T *v, size_t len) {
std::stable_sort(v, v + len, StructKeyComparator<T>());
return CreateVectorOfStructs(v, len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector` in
/// sorted order.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(S *v,
size_t len) {
extern T Pack(const S &);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = Pack(v[i]); }
std::stable_sort(structs, structs + len, StructKeyComparator<T>());
return EndVectorOfStructs<T>(len);
}
/// @cond FLATBUFFERS_INTERNAL
template<typename T> struct TableKeyComparator {
explicit TableKeyComparator(vector_downward<SizeT> &buf) : buf_(buf) {}
TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {}
bool operator()(const Offset<T> &a, const Offset<T> &b) const {
auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
return table_a->KeyCompareLessThan(table_b);
}
vector_downward<SizeT> &buf_;
private:
FLATBUFFERS_DELETE_FUNC(
TableKeyComparator &operator=(const TableKeyComparator &other));
};
/// @endcond
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @param[in] len The number of elements to store in the `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(Offset<T> *v,
size_t len) {
std::stable_sort(v, v + len, TableKeyComparator<T>(buf_));
return CreateVector(v, len);
}
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
std::vector<Offset<T>, Alloc> *v) {
return CreateVectorOfSortedTables(data(*v), v->size());
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[in] elemsize The size of each element in the `vector`.
/// @param[out] buf A pointer to a `uint8_t` pointer that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
size_t alignment, uint8_t **buf) {
NotNested();
StartVector(len, elemsize, alignment);
buf_.make_space(len * elemsize);
const uoffset_t vec_start = GetSizeRelative32BitRegion();
auto vec_end = EndVector(len);
*buf = buf_.data_at(vec_start);
return vec_end;
}
FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]])
uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
uint8_t **buf) {
return CreateUninitializedVector(len, elemsize, elemsize, buf);
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @tparam T The data type of the data that will be stored in the buffer
/// as a `vector`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[out] buf A pointer to a pointer of type `T` that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
template<typename T>
Offset<Vector<T>> CreateUninitializedVector(size_t len, T **buf) {
AssertScalarT<T>();
return CreateUninitializedVector(len, sizeof(T), AlignOf<T>(),
reinterpret_cast<uint8_t **>(buf));
}
template<typename T>
Offset<Vector<const T *>> CreateUninitializedVectorOfStructs(size_t len,
T **buf) {
return CreateUninitializedVector(len, sizeof(T), AlignOf<T>(),
reinterpret_cast<uint8_t **>(buf));
}
// @brief Create a vector of scalar type T given as input a vector of scalar
// type U, useful with e.g. pre "enum class" enums, or any existing scalar
// data of the wrong type.
template<typename T, typename U>
Offset<Vector<T>> CreateVectorScalarCast(const U *v, size_t len) {
AssertScalarT<T>();
AssertScalarT<U>();
StartVector<T>(len);
for (auto i = len; i > 0;) { PushElement(static_cast<T>(v[--i])); }
return Offset<Vector<T>>(EndVector(len));
}
/// @brief Write a struct by itself, typically to be part of a union.
template<typename T> Offset<const T *> CreateStruct(const T &structobj) {
NotNested();
Align(AlignOf<T>());
buf_.push_small(structobj);
return Offset<const T *>(
CalculateOffset<typename Offset<const T *>::offset_type>());
}
/// @brief Finish serializing a buffer by writing the root offset.
/// @param[in] file_identifier If a `file_identifier` is given, the buffer
/// will be prefixed with a standard FlatBuffers file header.
template<typename T>
void Finish(Offset<T> root, const char *file_identifier = nullptr) {
Finish(root.o, file_identifier, false);
}
/// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the
/// buffer following the size field). These buffers are NOT compatible
/// with standard buffers created by Finish, i.e. you can't call GetRoot
/// on them, you have to use GetSizePrefixedRoot instead.
/// All >32 bit quantities in this buffer will be aligned when the whole
/// size pre-fixed buffer is aligned.
/// These kinds of buffers are useful for creating a stream of FlatBuffers.
template<typename T>
void FinishSizePrefixed(Offset<T> root,
const char *file_identifier = nullptr) {
Finish(root.o, file_identifier, true);
}
void SwapBufAllocator(FlatBufferBuilderImpl &other) {
buf_.swap_allocator(other.buf_);
}
/// @brief The length of a FlatBuffer file header.
static const size_t kFileIdentifierLength =
::flatbuffers::kFileIdentifierLength;
protected:
// You shouldn't really be copying instances of this class.
FlatBufferBuilderImpl(const FlatBufferBuilderImpl &);
FlatBufferBuilderImpl &operator=(const FlatBufferBuilderImpl &);
void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) {
// A buffer can only be finished once. To reuse a builder use `clear()`.
FLATBUFFERS_ASSERT(!finished);
NotNested();
buf_.clear_scratch();
const size_t prefix_size = size_prefix ? sizeof(SizeT) : 0;
// Make sure we track the alignment of the size prefix.
TrackMinAlign(prefix_size);
const size_t root_offset_size = sizeof(uoffset_t);
const size_t file_id_size = file_identifier ? kFileIdentifierLength : 0;
// This will cause the whole buffer to be aligned.
PreAlign(prefix_size + root_offset_size + file_id_size, minalign_);
if (file_identifier) {
FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength);
PushBytes(reinterpret_cast<const uint8_t *>(file_identifier),
kFileIdentifierLength);
}
PushElement(ReferTo(root)); // Location of root.
if (size_prefix) { PushElement(GetSize()); }
finished = true;
}
struct FieldLoc {
uoffset_t off;
voffset_t id;
};
vector_downward<SizeT> buf_;
// Accumulating offsets of table members while it is being built.
// We store these in the scratch pad of buf_, after the vtable offsets.
uoffset_t num_field_loc;
// Track how much of the vtable is in use, so we can output the most compact
// possible vtable.
voffset_t max_voffset_;
// This is the length of the 64-bit region of the buffer. The buffer supports
// 64-bit offsets by forcing serialization of those elements in the "tail"
// region of the buffer (i.e. "64-bit region"). To properly keep track of
// offsets that are referenced from the tail of the buffer to not overflow
// their size (e.g. Offset is a uint32_t type), the boundary of the 32-/64-bit
// regions must be tracked.
//
// [ Complete FlatBuffer ]
// [32-bit region][64-bit region]
// ^ ^
// | Tail of the buffer.
// |
// Tail of the 32-bit region of the buffer.
//
// This keeps track of the size of the 64-bit region so that the tail of the
// 32-bit region can be calculated as `GetSize() - length_of_64_bit_region_`.
//
// This will remain 0 if no 64-bit offset types are added to the buffer.
size_t length_of_64_bit_region_;
// Ensure objects are not nested.
bool nested;
// Ensure the buffer is finished before it is being accessed.
bool finished;
size_t minalign_;
bool force_defaults_; // Serialize values equal to their defaults anyway.
bool dedup_vtables_;
struct StringOffsetCompare {
explicit StringOffsetCompare(const vector_downward<SizeT> &buf)
: buf_(&buf) {}
bool operator()(const Offset<String> &a, const Offset<String> &b) const {
auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o));
auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o));
return StringLessThan(stra->data(), stra->size(), strb->data(),
strb->size());
}
const vector_downward<SizeT> *buf_;
};
// For use with CreateSharedString. Instantiated on first use only.
typedef std::set<Offset<String>, StringOffsetCompare> StringOffsetMap;
StringOffsetMap *string_pool;
private:
void CanAddOffset64() {
// If you hit this assertion, you are attempting to add a 64-bit offset to
// a 32-bit only builder. This is because the builder has overloads that
// differ only on the offset size returned: e.g.:
//
// FlatBufferBuilder builder;
// Offset64<String> string_offset = builder.CreateString<Offset64>();
//
// Either use a 64-bit aware builder, or don't try to create an Offset64
// return type.
//
// TODO(derekbailey): we can probably do more enable_if to avoid this
// looking like its possible to the user.
static_assert(Is64Aware, "cannot add 64-bit offset to a 32-bit builder");
// If you hit this assertion, you are attempting to add an 64-bit offset
// item after already serializing a 32-bit item. All 64-bit offsets have to
// added to the tail of the buffer before any 32-bit items can be added.
// Otherwise some items might not be addressable due to the maximum range of
// the 32-bit offset.
FLATBUFFERS_ASSERT(GetSize() == length_of_64_bit_region_);
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
void CreateStringImpl(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
}
// Allocates space for a vector of structures.
// Must be completed with EndVectorOfStructs().
template<typename T, template<typename> class OffsetT = Offset>
T *StartVectorOfStructs(size_t vector_size) {
StartVector<OffsetT>(vector_size, sizeof(T), AlignOf<T>());
return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T)));
}
// End the vector of structures in the flatbuffers.
// Vector should have previously be started with StartVectorOfStructs().
template<typename T, template<typename> class OffsetT = Offset>
OffsetT<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
return OffsetT<Vector<const T *>>(
EndVector<typename Vector<const T *>::size_type,
typename OffsetT<Vector<const T *>>::offset_type>(
vector_size));
}
template<typename T>
typename std::enable_if<std::is_same<T, uoffset_t>::value, T>::type
CalculateOffset() {
// Default to the end of the 32-bit region. This may or may not be the end
// of the buffer, depending on if any 64-bit offsets have been added.
return GetSizeRelative32BitRegion();
}
// Specializations to handle the 64-bit CalculateOffset, which is relative to
// end of the buffer.
template<typename T>
typename std::enable_if<std::is_same<T, uoffset64_t>::value, T>::type
CalculateOffset() {
// This should never be compiled in when not using a 64-bit builder.
static_assert(Is64Aware, "invalid 64-bit offset in 32-bit builder");
// Store how big the 64-bit region of the buffer is, so we can determine
// where the 32/64 bit boundary is.
length_of_64_bit_region_ = GetSize();
return length_of_64_bit_region_;
}
};
/// @}
// Hack to `FlatBufferBuilder` mean `FlatBufferBuilder<false>` or
// `FlatBufferBuilder<>`, where the template < > syntax is required.
using FlatBufferBuilder = FlatBufferBuilderImpl<false>;
using FlatBufferBuilder64 = FlatBufferBuilderImpl<true>;
// These are external due to GCC not allowing them in the class.
// See: https://stackoverflow.com/q/8061456/868247
template<>
template<>
inline Offset64<String> FlatBufferBuilder64::CreateString(const char *str,
size_t len) {
CanAddOffset64();
CreateStringImpl(str, len);
return Offset64<String>(
CalculateOffset<typename Offset64<String>::offset_type>());
}
// Used to distinguish from real Offsets.
template<typename T = void> struct EmptyOffset {};
// TODO(derekbailey): it would be nice to combine these two methods.
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint32_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint32_t>(len, elemsize, alignment);
}
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint64_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint64_t>(len, elemsize, alignment);
}
/// Helpers to get a typed pointer to objects that are currently being built.
/// @warning Creating new objects will lead to reallocations and invalidates
/// the pointer!
template<typename T>
T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
return reinterpret_cast<T *>(fbb.GetCurrentBufferPointer() + fbb.GetSize() -
offset.o);
}
template<typename T>
const T *GetTemporaryPointer(const FlatBufferBuilder &fbb, Offset<T> offset) {
return GetMutableTemporaryPointer<T>(fbb, offset);
}
} // namespace flatbuffers
#endif // FLATBUFFERS_FLATBUFFER_BUILDER_H_
|