aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/openmp/z_Windows_NT_util.c
blob: 7f5ccd45526362a63a985f74d190ddc2fbfd299e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
/*
 * z_Windows_NT_util.c -- platform specific routines.
 */


//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//


#include "kmp.h"
#include "kmp_itt.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_wait_release.h"



/* ----------------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------------------- */

/* This code is related to NtQuerySystemInformation() function. This function
   is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
   number of running threads in the system. */

#include <ntstatus.h>
#include <ntsecapi.h>   // UNICODE_STRING

enum SYSTEM_INFORMATION_CLASS {
    SystemProcessInformation = 5
}; // SYSTEM_INFORMATION_CLASS

struct CLIENT_ID {
    HANDLE UniqueProcess;
    HANDLE UniqueThread;
}; // struct CLIENT_ID

enum THREAD_STATE {
    StateInitialized,
    StateReady,
    StateRunning,
    StateStandby,
    StateTerminated,
    StateWait,
    StateTransition,
    StateUnknown
}; // enum THREAD_STATE

struct VM_COUNTERS {
    SIZE_T        PeakVirtualSize;
    SIZE_T        VirtualSize;
    ULONG         PageFaultCount;
    SIZE_T        PeakWorkingSetSize;
    SIZE_T        WorkingSetSize;
    SIZE_T        QuotaPeakPagedPoolUsage;
    SIZE_T        QuotaPagedPoolUsage;
    SIZE_T        QuotaPeakNonPagedPoolUsage;
    SIZE_T        QuotaNonPagedPoolUsage;
    SIZE_T        PagefileUsage;
    SIZE_T        PeakPagefileUsage;
    SIZE_T        PrivatePageCount;
}; // struct VM_COUNTERS

struct SYSTEM_THREAD {
  LARGE_INTEGER   KernelTime;
  LARGE_INTEGER   UserTime;
  LARGE_INTEGER   CreateTime;
  ULONG           WaitTime;
  LPVOID          StartAddress;
  CLIENT_ID       ClientId;
  DWORD           Priority;
  LONG            BasePriority;
  ULONG           ContextSwitchCount;
  THREAD_STATE    State;
  ULONG           WaitReason;
}; // SYSTEM_THREAD

KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, KernelTime ) == 0 );
#if KMP_ARCH_X86
    KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, StartAddress ) == 28 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, State        ) == 52 );
#else
    KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, StartAddress ) == 32 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, State        ) == 68 );
#endif

struct SYSTEM_PROCESS_INFORMATION {
  ULONG           NextEntryOffset;
  ULONG           NumberOfThreads;
  LARGE_INTEGER   Reserved[ 3 ];
  LARGE_INTEGER   CreateTime;
  LARGE_INTEGER   UserTime;
  LARGE_INTEGER   KernelTime;
  UNICODE_STRING  ImageName;
  DWORD           BasePriority;
  HANDLE          ProcessId;
  HANDLE          ParentProcessId;
  ULONG           HandleCount;
  ULONG           Reserved2[ 2 ];
  VM_COUNTERS     VMCounters;
  IO_COUNTERS     IOCounters;
  SYSTEM_THREAD   Threads[ 1 ];
}; // SYSTEM_PROCESS_INFORMATION
typedef SYSTEM_PROCESS_INFORMATION * PSYSTEM_PROCESS_INFORMATION;

KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, NextEntryOffset ) ==  0 );
KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, CreateTime      ) == 32 );
KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ImageName       ) == 56 );
#if KMP_ARCH_X86
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ProcessId       ) ==  68 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, HandleCount     ) ==  76 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, VMCounters      ) ==  88 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, IOCounters      ) == 136 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, Threads         ) == 184 );
#else
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ProcessId       ) ==  80 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, HandleCount     ) ==  96 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, VMCounters      ) == 112 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, IOCounters      ) == 208 );
    KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, Threads         ) == 256 );
#endif

typedef NTSTATUS (NTAPI *NtQuerySystemInformation_t)( SYSTEM_INFORMATION_CLASS, PVOID, ULONG, PULONG );
NtQuerySystemInformation_t NtQuerySystemInformation = NULL;

HMODULE ntdll = NULL;

/* End of NtQuerySystemInformation()-related code */

#if KMP_GROUP_AFFINITY
static HMODULE kernel32 = NULL;
#endif /* KMP_GROUP_AFFINITY */

/* ----------------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------------------- */

#if KMP_HANDLE_SIGNALS
    typedef void    (* sig_func_t )( int );
    static sig_func_t  __kmp_sighldrs[ NSIG ];
    static int         __kmp_siginstalled[ NSIG ];
#endif

static HANDLE   __kmp_monitor_ev;
static kmp_int64 __kmp_win32_time;
double __kmp_win32_tick;

int __kmp_init_runtime = FALSE;
CRITICAL_SECTION __kmp_win32_section;

void
__kmp_win32_mutex_init( kmp_win32_mutex_t *mx )
{
    InitializeCriticalSection( & mx->cs );
#if USE_ITT_BUILD
    __kmp_itt_system_object_created( & mx->cs, "Critical Section" );
#endif /* USE_ITT_BUILD */
}

void
__kmp_win32_mutex_destroy( kmp_win32_mutex_t *mx )
{
    DeleteCriticalSection( & mx->cs );
}

void
__kmp_win32_mutex_lock( kmp_win32_mutex_t *mx )
{
    EnterCriticalSection( & mx->cs );
}

void
__kmp_win32_mutex_unlock( kmp_win32_mutex_t *mx )
{
    LeaveCriticalSection( & mx->cs );
}

void
__kmp_win32_cond_init( kmp_win32_cond_t *cv )
{
    cv->waiters_count_         = 0;
    cv->wait_generation_count_ = 0;
    cv->release_count_         = 0;

    /* Initialize the critical section */
    __kmp_win32_mutex_init( & cv->waiters_count_lock_ );

    /* Create a manual-reset event. */
    cv->event_ = CreateEvent( NULL,     // no security
                              TRUE,     // manual-reset
                              FALSE,    // non-signaled initially
                              NULL );   // unnamed
#if USE_ITT_BUILD
    __kmp_itt_system_object_created( cv->event_, "Event" );
#endif /* USE_ITT_BUILD */
}

void
__kmp_win32_cond_destroy( kmp_win32_cond_t *cv )
{
    __kmp_win32_mutex_destroy( & cv->waiters_count_lock_ );
    __kmp_free_handle( cv->event_ );
    memset( cv, '\0', sizeof( *cv ) );
}

/* TODO associate cv with a team instead of a thread so as to optimize
 * the case where we wake up a whole team */

void
__kmp_win32_cond_wait( kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, kmp_info_t *th, int need_decrease_load )
{
    int my_generation;
    int last_waiter;

    /* Avoid race conditions */
    __kmp_win32_mutex_lock( &cv->waiters_count_lock_ );

    /* Increment count of waiters */
    cv->waiters_count_++;

    /* Store current generation in our activation record. */
    my_generation = cv->wait_generation_count_;

    __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ );
    __kmp_win32_mutex_unlock( mx );


    for (;;) {
        int wait_done;

        /* Wait until the event is signaled */
        WaitForSingleObject( cv->event_, INFINITE );

        __kmp_win32_mutex_lock( &cv->waiters_count_lock_ );

        /* Exit the loop when the <cv->event_> is signaled and
         * there are still waiting threads from this <wait_generation>
         * that haven't been released from this wait yet.              */
        wait_done = ( cv->release_count_ > 0 ) &&
                    ( cv->wait_generation_count_ != my_generation );

        __kmp_win32_mutex_unlock( &cv->waiters_count_lock_);

        /* there used to be a semicolon after the if statement,
         * it looked like a bug, so i removed it */
        if( wait_done )
            break;
    }

    __kmp_win32_mutex_lock( mx );
    __kmp_win32_mutex_lock( &cv->waiters_count_lock_ );

    cv->waiters_count_--;
    cv->release_count_--;

    last_waiter =  ( cv->release_count_ == 0 );

    __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ );

    if( last_waiter ) {
        /* We're the last waiter to be notified, so reset the manual event. */
        ResetEvent( cv->event_ );
    }
}

void
__kmp_win32_cond_broadcast( kmp_win32_cond_t *cv )
{
    __kmp_win32_mutex_lock( &cv->waiters_count_lock_ );

    if( cv->waiters_count_ > 0 ) {
        SetEvent( cv->event_ );
        /* Release all the threads in this generation. */

        cv->release_count_ = cv->waiters_count_;

        /* Start a new generation. */
        cv->wait_generation_count_++;
    }

    __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ );
}

void
__kmp_win32_cond_signal( kmp_win32_cond_t *cv )
{
    __kmp_win32_cond_broadcast( cv );
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void
__kmp_enable( int new_state )
{
    if (__kmp_init_runtime)
        LeaveCriticalSection( & __kmp_win32_section );
}

void
__kmp_disable( int *old_state )
{
    *old_state = 0;

    if (__kmp_init_runtime)
        EnterCriticalSection( & __kmp_win32_section );
}

void
__kmp_suspend_initialize( void )
{
    /* do nothing */
}

static void
__kmp_suspend_initialize_thread( kmp_info_t *th )
{
    if ( ! TCR_4( th->th.th_suspend_init ) ) {
      /* this means we haven't initialized the suspension pthread objects for this thread
         in this instance of the process */
        __kmp_win32_cond_init(  &th->th.th_suspend_cv );
        __kmp_win32_mutex_init( &th->th.th_suspend_mx );
        TCW_4( th->th.th_suspend_init, TRUE );
    }
}

void
__kmp_suspend_uninitialize_thread( kmp_info_t *th )
{
    if ( TCR_4( th->th.th_suspend_init ) ) {
      /* this means we have initialize the suspension pthread objects for this thread
         in this instance of the process */
      __kmp_win32_cond_destroy( & th->th.th_suspend_cv );
      __kmp_win32_mutex_destroy( & th->th.th_suspend_mx );
      TCW_4( th->th.th_suspend_init, FALSE );
    }
}

/* This routine puts the calling thread to sleep after setting the
 * sleep bit for the indicated flag variable to true.
 */
template <class C>
static inline void __kmp_suspend_template( int th_gtid, C *flag )
{
    kmp_info_t *th = __kmp_threads[th_gtid];
    int status;
    typename C::flag_t old_spin;

    KF_TRACE( 30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", th_gtid, flag->get() ) );

    __kmp_suspend_initialize_thread( th );
    __kmp_win32_mutex_lock( &th->th.th_suspend_mx );

    KF_TRACE( 10, ( "__kmp_suspend_template: T#%d setting sleep bit for flag's loc(%p)\n",
                    th_gtid, flag->get() ) );

    /* TODO: shouldn't this use release semantics to ensure that __kmp_suspend_initialize_thread
       gets called first?
    */
    old_spin = flag->set_sleeping();

    KF_TRACE( 5, ( "__kmp_suspend_template: T#%d set sleep bit for flag's loc(%p)==%d\n",
                   th_gtid, flag->get(), *(flag->get()) ) );

    if ( flag->done_check_val(old_spin) ) {
        old_spin = flag->unset_sleeping();
        KF_TRACE( 5, ( "__kmp_suspend_template: T#%d false alarm, reset sleep bit for flag's loc(%p)\n",
                       th_gtid, flag->get()) );
    } else {
#ifdef DEBUG_SUSPEND
        __kmp_suspend_count++;
#endif
        /* Encapsulate in a loop as the documentation states that this may
         * "with low probability" return when the condition variable has
         * not been signaled or broadcast
         */
        int deactivated = FALSE;
        TCW_PTR(th->th.th_sleep_loc, (void *)flag);
        while ( flag->is_sleeping() ) {
            KF_TRACE( 15, ("__kmp_suspend_template: T#%d about to perform kmp_win32_cond_wait()\n",
                     th_gtid ) );
            // Mark the thread as no longer active (only in the first iteration of the loop).
            if ( ! deactivated ) {
                th->th.th_active = FALSE;
                if ( th->th.th_active_in_pool ) {
                    th->th.th_active_in_pool = FALSE;
                    KMP_TEST_THEN_DEC32(
                      (kmp_int32 *) &__kmp_thread_pool_active_nth );
                    KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 );
                }
                deactivated = TRUE;


                __kmp_win32_cond_wait( &th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 0 );
            }
            else {
                __kmp_win32_cond_wait( &th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 0 );
            }

#ifdef KMP_DEBUG
            if( flag->is_sleeping() ) {
                KF_TRACE( 100, ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid ));
            }
#endif /* KMP_DEBUG */

        } // while

        // Mark the thread as active again (if it was previous marked as inactive)
        if ( deactivated ) {
            th->th.th_active = TRUE;
            if ( TCR_4(th->th.th_in_pool) ) {
                KMP_TEST_THEN_INC32(
                  (kmp_int32 *) &__kmp_thread_pool_active_nth );
                th->th.th_active_in_pool = TRUE;
            }
        }
    }


    __kmp_win32_mutex_unlock( &th->th.th_suspend_mx );

    KF_TRACE( 30, ("__kmp_suspend_template: T#%d exit\n", th_gtid ) );
}

void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
    __kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
    __kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
    __kmp_suspend_template(th_gtid, flag);
}


/* This routine signals the thread specified by target_gtid to wake up
 * after setting the sleep bit indicated by the flag argument to FALSE
 */
template <class C>
static inline void __kmp_resume_template( int target_gtid, C *flag )
{
    kmp_info_t *th = __kmp_threads[target_gtid];
    int status;

#ifdef KMP_DEBUG
    int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif

    KF_TRACE( 30, ( "__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", gtid, target_gtid ) );

    __kmp_suspend_initialize_thread( th );
    __kmp_win32_mutex_lock( &th->th.th_suspend_mx );

    if (!flag) { // coming from __kmp_null_resume_wrapper
        flag = (C *)th->th.th_sleep_loc;
    }

    // First, check if the flag is null or its type has changed. If so, someone else woke it up.
    if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type simply shows what flag was cast to
        KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag's loc(%p)\n",
                       gtid, target_gtid, NULL ) );
        __kmp_win32_mutex_unlock( &th->th.th_suspend_mx );
        return;
    }
    else {
        typename C::flag_t old_spin = flag->unset_sleeping();
        if ( !flag->is_sleeping_val(old_spin) ) {
            KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag's loc(%p): "
                           "%u => %u\n",
                           gtid, target_gtid, flag->get(), old_spin, *(flag->get()) ) );
            __kmp_win32_mutex_unlock( &th->th.th_suspend_mx );
            return;
        }
    }
    TCW_PTR(th->th.th_sleep_loc, NULL);

    KF_TRACE( 5, ( "__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep bit for flag's loc(%p)\n",
                   gtid, target_gtid, flag->get() ) );


    __kmp_win32_cond_signal(  &th->th.th_suspend_cv );
    __kmp_win32_mutex_unlock( &th->th.th_suspend_mx );

    KF_TRACE( 30, ( "__kmp_resume_template: T#%d exiting after signaling wake up for T#%d\n",
                    gtid, target_gtid ) );
}

void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
    __kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
    __kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
    __kmp_resume_template(target_gtid, flag);
}


/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void
__kmp_yield( int cond )
{
    if (cond)
        Sleep(0);
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void
__kmp_gtid_set_specific( int gtid )
{
    KA_TRACE( 50, ("__kmp_gtid_set_specific: T#%d key:%d\n",
                gtid, __kmp_gtid_threadprivate_key ));
    KMP_ASSERT( __kmp_init_runtime );
    if( ! TlsSetValue( __kmp_gtid_threadprivate_key, (LPVOID)(gtid+1)) )
        KMP_FATAL( TLSSetValueFailed );
}

int
__kmp_gtid_get_specific()
{
    int gtid;
    if( !__kmp_init_runtime ) {
        KA_TRACE( 50, ("__kmp_get_specific: runtime shutdown, returning KMP_GTID_SHUTDOWN\n" ) );
        return KMP_GTID_SHUTDOWN;
    }
    gtid = (int)(kmp_intptr_t)TlsGetValue( __kmp_gtid_threadprivate_key );
    if ( gtid == 0 ) {
        gtid = KMP_GTID_DNE;
    }
    else {
        gtid--;
    }
    KA_TRACE( 50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
                __kmp_gtid_threadprivate_key, gtid ));
    return gtid;
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

#if KMP_GROUP_AFFINITY

//
// Only 1 DWORD in the mask should have any procs set.
// Return the appropriate index, or -1 for an invalid mask.
//
int
__kmp_get_proc_group( kmp_affin_mask_t const *mask )
{
    int i;
    int group = -1;
    for (i = 0; i < __kmp_num_proc_groups; i++) {
        if (mask[i] == 0) {
            continue;
        }
        if (group >= 0) {
            return -1;
        }
        group = i;
    }
    return group;
}

#endif /* KMP_GROUP_AFFINITY */

int
__kmp_set_system_affinity( kmp_affin_mask_t const *mask, int abort_on_error )
{

#if KMP_GROUP_AFFINITY

    if (__kmp_num_proc_groups > 1) {
        //
        // Check for a valid mask.
        //
        GROUP_AFFINITY ga;
        int group = __kmp_get_proc_group( mask );
        if (group < 0) {
            if (abort_on_error) {
                KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
            }
            return -1;
        }

        //
        // Transform the bit vector into a GROUP_AFFINITY struct
        // and make the system call to set affinity.
        //
        ga.Group = group;
        ga.Mask = mask[group];
        ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;

        KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
        if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG( CantSetThreadAffMask ),
                    KMP_ERR( error ),
                    __kmp_msg_null
                );
            }
            return error;
        }
    }
    else

#endif /* KMP_GROUP_AFFINITY */

    {
        if (!SetThreadAffinityMask( GetCurrentThread(), *mask )) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG( CantSetThreadAffMask ),
                    KMP_ERR( error ),
                    __kmp_msg_null
                );
            }
            return error;
        }
    }
    return 0;
}

int
__kmp_get_system_affinity( kmp_affin_mask_t *mask, int abort_on_error )
{

#if KMP_GROUP_AFFINITY

    if (__kmp_num_proc_groups > 1) {
        KMP_CPU_ZERO(mask);
        GROUP_AFFINITY ga;
        KMP_DEBUG_ASSERT(__kmp_GetThreadGroupAffinity != NULL);

        if (__kmp_GetThreadGroupAffinity(GetCurrentThread(), &ga) == 0) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG(FunctionError, "GetThreadGroupAffinity()"),
                    KMP_ERR(error),
                    __kmp_msg_null
                );
            }
            return error;
        }

        if ((ga.Group < 0) || (ga.Group > __kmp_num_proc_groups)
          || (ga.Mask == 0)) {
            return -1;
        }

        mask[ga.Group] = ga.Mask;
    }
    else

#endif /* KMP_GROUP_AFFINITY */

    {
        kmp_affin_mask_t newMask, sysMask, retval;

        if (!GetProcessAffinityMask(GetCurrentProcess(), &newMask, &sysMask)) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG(FunctionError, "GetProcessAffinityMask()"),
                    KMP_ERR(error),
                    __kmp_msg_null
                );
            }
            return error;
        }
        retval = SetThreadAffinityMask(GetCurrentThread(), newMask);
        if (! retval) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
                    KMP_ERR(error),
                    __kmp_msg_null
                );
            }
            return error;
        }
        newMask = SetThreadAffinityMask(GetCurrentThread(), retval);
        if (! newMask) {
            DWORD error = GetLastError();
            if (abort_on_error) {
                __kmp_msg(
                    kmp_ms_fatal,
                    KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
                    KMP_ERR(error),
                    __kmp_msg_null
                );
            }
        }
        *mask = retval;
    }
    return 0;
}

void
__kmp_affinity_bind_thread( int proc )
{

#if KMP_GROUP_AFFINITY

    if (__kmp_num_proc_groups > 1) {
        //
        // Form the GROUP_AFFINITY struct directly, rather than filling
        // out a bit vector and calling __kmp_set_system_affinity().
        //
        GROUP_AFFINITY ga;
        KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups
           * CHAR_BIT * sizeof(DWORD_PTR))));
        ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
        ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
        ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;

        KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
        if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
            DWORD error = GetLastError();
            if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
                __kmp_msg(
                    kmp_ms_warning,
                    KMP_MSG( CantSetThreadAffMask ),
                    KMP_ERR( error ),
                    __kmp_msg_null
                );
            }
        }
    }
    else

#endif /* KMP_GROUP_AFFINITY */

    {
        kmp_affin_mask_t mask;
        KMP_CPU_ZERO(&mask);
        KMP_CPU_SET(proc, &mask);
        __kmp_set_system_affinity(&mask, TRUE);
    }
}

void
__kmp_affinity_determine_capable( const char *env_var )
{
    //
    // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
    //

#if KMP_GROUP_AFFINITY
    KMP_AFFINITY_ENABLE(__kmp_num_proc_groups*sizeof(kmp_affin_mask_t));
#else
    KMP_AFFINITY_ENABLE(sizeof(kmp_affin_mask_t));
#endif

    KA_TRACE( 10, (
        "__kmp_affinity_determine_capable: "
            "Windows* OS affinity interface functional (mask size = %" KMP_SIZE_T_SPEC ").\n",
        __kmp_affin_mask_size
    ) );
}

double
__kmp_read_cpu_time( void )
{
    FILETIME    CreationTime, ExitTime, KernelTime, UserTime;
    int         status;
    double      cpu_time;

    cpu_time = 0;

    status = GetProcessTimes( GetCurrentProcess(), &CreationTime,
                              &ExitTime, &KernelTime, &UserTime );

    if (status) {
        double  sec = 0;

        sec += KernelTime.dwHighDateTime;
        sec += UserTime.dwHighDateTime;

        /* Shift left by 32 bits */
        sec *= (double) (1 << 16) * (double) (1 << 16);

        sec += KernelTime.dwLowDateTime;
        sec += UserTime.dwLowDateTime;

        cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
    }

    return cpu_time;
}

int
__kmp_read_system_info( struct kmp_sys_info *info )
{
    info->maxrss  = 0;                   /* the maximum resident set size utilized (in kilobytes)     */
    info->minflt  = 0;                   /* the number of page faults serviced without any I/O        */
    info->majflt  = 0;                   /* the number of page faults serviced that required I/O      */
    info->nswap   = 0;                   /* the number of times a process was "swapped" out of memory */
    info->inblock = 0;                   /* the number of times the file system had to perform input  */
    info->oublock = 0;                   /* the number of times the file system had to perform output */
    info->nvcsw   = 0;                   /* the number of times a context switch was voluntarily      */
    info->nivcsw  = 0;                   /* the number of times a context switch was forced           */

    return 1;
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */


void
__kmp_runtime_initialize( void )
{
    SYSTEM_INFO info;
    kmp_str_buf_t path;
    UINT path_size;

    if ( __kmp_init_runtime ) {
        return;
    };

#if KMP_DYNAMIC_LIB
    /* Pin dynamic library for the lifetime of application */
    {
        // First, turn off error message boxes
        UINT err_mode = SetErrorMode (SEM_FAILCRITICALERRORS);
        HMODULE h;
        BOOL ret = GetModuleHandleEx( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS
                                     |GET_MODULE_HANDLE_EX_FLAG_PIN,
                                     (LPCTSTR)&__kmp_serial_initialize, &h);
        KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
        SetErrorMode (err_mode);   // Restore error mode
        KA_TRACE( 10, ("__kmp_runtime_initialize: dynamic library pinned\n") );
    }
#endif

    InitializeCriticalSection( & __kmp_win32_section );
#if USE_ITT_BUILD
    __kmp_itt_system_object_created( & __kmp_win32_section, "Critical Section" );
#endif /* USE_ITT_BUILD */
    __kmp_initialize_system_tick();

    #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
        if ( ! __kmp_cpuinfo.initialized ) {
            __kmp_query_cpuid( & __kmp_cpuinfo );
        }; // if
    #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

    /* Set up minimum number of threads to switch to TLS gtid */
    #if KMP_OS_WINDOWS && ! defined KMP_DYNAMIC_LIB
        // Windows* OS, static library.
        /*
            New thread may use stack space previously used by another thread, currently terminated.
            On Windows* OS, in case of static linking, we do not know the moment of thread termination,
            and our structures (__kmp_threads and __kmp_root arrays) are still keep info about dead
            threads. This leads to problem in __kmp_get_global_thread_id() function: it wrongly
            finds gtid (by searching through stack addresses of all known threads) for unregistered
            foreign tread.

            Setting __kmp_tls_gtid_min to 0 workarounds this problem: __kmp_get_global_thread_id()
            does not search through stacks, but get gtid from TLS immediately.

            --ln
        */
        __kmp_tls_gtid_min = 0;
    #else
        __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
    #endif

    /* for the static library */
    if ( !__kmp_gtid_threadprivate_key ) {
        __kmp_gtid_threadprivate_key = TlsAlloc();
        if( __kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES ) {
            KMP_FATAL( TLSOutOfIndexes );
        }
    }


    //
    // Load ntdll.dll.
    //
    /*
        Simple
            GetModuleHandle( "ntdll.dl" )
        is not suitable due to security issue (see
        http://www.microsoft.com/technet/security/advisory/2269637.mspx). We have to specify full
        path to the library.
    */
    __kmp_str_buf_init( & path );
    path_size = GetSystemDirectory( path.str, path.size );
    KMP_DEBUG_ASSERT( path_size > 0 );
    if ( path_size >= path.size ) {
        //
        // Buffer is too short.  Expand the buffer and try again.
        //
        __kmp_str_buf_reserve( & path, path_size );
        path_size = GetSystemDirectory( path.str, path.size );
        KMP_DEBUG_ASSERT( path_size > 0 );
    }; // if
    if ( path_size > 0 && path_size < path.size ) {
        //
        // Now we have system directory name in the buffer.
        // Append backslash and name of dll to form full path,
        //
        path.used = path_size;
        __kmp_str_buf_print( & path, "\\%s", "ntdll.dll" );

        //
        // Now load ntdll using full path.
        //
        ntdll = GetModuleHandle( path.str );
    }

    KMP_DEBUG_ASSERT( ntdll != NULL );
    if ( ntdll != NULL ) {
        NtQuerySystemInformation = (NtQuerySystemInformation_t) GetProcAddress( ntdll, "NtQuerySystemInformation" );
    }
    KMP_DEBUG_ASSERT( NtQuerySystemInformation != NULL );

#if KMP_GROUP_AFFINITY
    //
    // Load kernel32.dll.
    // Same caveat - must use full system path name.
    //
    if ( path_size > 0 && path_size < path.size ) {
        //
        // Truncate the buffer back to just the system path length,
        // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
        //
        path.used = path_size;
        __kmp_str_buf_print( & path, "\\%s", "kernel32.dll" );

        //
        // Load kernel32.dll using full path.
        //
        kernel32 = GetModuleHandle( path.str );
        KA_TRACE( 10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str ) );

        //
        // Load the function pointers to kernel32.dll routines
        // that may or may not exist on this system.
        //
        if ( kernel32 != NULL ) {
            __kmp_GetActiveProcessorCount = (kmp_GetActiveProcessorCount_t) GetProcAddress( kernel32, "GetActiveProcessorCount" );
            __kmp_GetActiveProcessorGroupCount = (kmp_GetActiveProcessorGroupCount_t) GetProcAddress( kernel32, "GetActiveProcessorGroupCount" );
            __kmp_GetThreadGroupAffinity = (kmp_GetThreadGroupAffinity_t) GetProcAddress( kernel32, "GetThreadGroupAffinity" );
            __kmp_SetThreadGroupAffinity = (kmp_SetThreadGroupAffinity_t) GetProcAddress( kernel32, "SetThreadGroupAffinity" );

            KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount = %p\n", __kmp_GetActiveProcessorCount ) );
            KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorGroupCount = %p\n", __kmp_GetActiveProcessorGroupCount ) );
            KA_TRACE( 10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity = %p\n", __kmp_GetThreadGroupAffinity ) );
            KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity = %p\n", __kmp_SetThreadGroupAffinity ) );
            KA_TRACE( 10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", sizeof(kmp_affin_mask_t) ) );

            //
            // See if group affinity is supported on this system.
            // If so, calculate the #groups and #procs.
            //
            // Group affinity was introduced with Windows* 7 OS and
            // Windows* Server 2008 R2 OS.
            //
            if ( ( __kmp_GetActiveProcessorCount != NULL )
              && ( __kmp_GetActiveProcessorGroupCount != NULL )
              && ( __kmp_GetThreadGroupAffinity != NULL )
              && ( __kmp_SetThreadGroupAffinity != NULL )
              && ( ( __kmp_num_proc_groups
              = __kmp_GetActiveProcessorGroupCount() ) > 1 ) ) {
                //
                // Calculate the total number of active OS procs.
                //
                int i;

                KA_TRACE( 10, ("__kmp_runtime_initialize: %d processor groups detected\n", __kmp_num_proc_groups ) );

                __kmp_xproc = 0;

                for ( i = 0; i < __kmp_num_proc_groups; i++ ) {
                    DWORD size = __kmp_GetActiveProcessorCount( i );
                    __kmp_xproc += size;
                    KA_TRACE( 10, ("__kmp_runtime_initialize: proc group %d size = %d\n", i, size ) );
                }
                }
            else {
                KA_TRACE( 10, ("__kmp_runtime_initialize: %d processor groups detected\n", __kmp_num_proc_groups ) );
            }
        }
    }
    if ( __kmp_num_proc_groups <= 1 ) {
        GetSystemInfo( & info );
        __kmp_xproc = info.dwNumberOfProcessors;
    }
#else
    GetSystemInfo( & info );
    __kmp_xproc = info.dwNumberOfProcessors;
#endif /* KMP_GROUP_AFFINITY */

    //
    // If the OS said there were 0 procs, take a guess and use a value of 2.
    // This is done for Linux* OS, also.  Do we need error / warning?
    //
    if ( __kmp_xproc <= 0 ) {
        __kmp_xproc = 2;
    }

    KA_TRACE( 5, ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc) );

    __kmp_str_buf_free( & path );

#if USE_ITT_BUILD
    __kmp_itt_initialize();
#endif /* USE_ITT_BUILD */

    __kmp_init_runtime = TRUE;
} // __kmp_runtime_initialize

void
__kmp_runtime_destroy( void )
{
    if ( ! __kmp_init_runtime ) {
        return;
    }

#if USE_ITT_BUILD
    __kmp_itt_destroy();
#endif /* USE_ITT_BUILD */

    /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
    /* due to the KX_TRACE() commands */
    KA_TRACE( 40, ("__kmp_runtime_destroy\n" ));

    if( __kmp_gtid_threadprivate_key ) {
        TlsFree( __kmp_gtid_threadprivate_key );
        __kmp_gtid_threadprivate_key = 0;
    }

    __kmp_affinity_uninitialize();
    DeleteCriticalSection( & __kmp_win32_section );

    ntdll = NULL;
    NtQuerySystemInformation = NULL;

#if KMP_ARCH_X86_64
    kernel32 = NULL;
    __kmp_GetActiveProcessorCount = NULL;
    __kmp_GetActiveProcessorGroupCount = NULL;
    __kmp_GetThreadGroupAffinity = NULL;
    __kmp_SetThreadGroupAffinity = NULL;
#endif // KMP_ARCH_X86_64

    __kmp_init_runtime = FALSE;
}


void
__kmp_terminate_thread( int gtid )
{
    kmp_info_t  *th = __kmp_threads[ gtid ];

    if( !th ) return;

    KA_TRACE( 10, ("__kmp_terminate_thread: kill (%d)\n", gtid ) );

    if (TerminateThread( th->th.th_info.ds.ds_thread, (DWORD) -1) == FALSE) {
        /* It's OK, the thread may have exited already */
    }
    __kmp_free_handle( th->th.th_info.ds.ds_thread );
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void
__kmp_clear_system_time( void )
{
    BOOL status;
    LARGE_INTEGER time;
    status = QueryPerformanceCounter( & time );
    __kmp_win32_time = (kmp_int64) time.QuadPart;
}

void
__kmp_initialize_system_tick( void )
{
    {
  BOOL status;
  LARGE_INTEGER freq;

  status = QueryPerformanceFrequency( & freq );
  if (! status) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( FunctionError, "QueryPerformanceFrequency()" ),
            KMP_ERR( error ),
            __kmp_msg_null
        );

  }
  else {
      __kmp_win32_tick = ((double) 1.0) / (double) freq.QuadPart;
  }
    }
}

/* Calculate the elapsed wall clock time for the user */

void
__kmp_elapsed( double *t )
{
    BOOL status;
    LARGE_INTEGER now;
    status = QueryPerformanceCounter( & now );
    *t = ((double) now.QuadPart) * __kmp_win32_tick;
}

/* Calculate the elapsed wall clock tick for the user */

void
__kmp_elapsed_tick( double *t )
{
    *t = __kmp_win32_tick;
}

void
__kmp_read_system_time( double *delta )
{

    if (delta != NULL) {
        BOOL status;
        LARGE_INTEGER now;

        status = QueryPerformanceCounter( & now );

        *delta = ((double) (((kmp_int64) now.QuadPart) - __kmp_win32_time))
    * __kmp_win32_tick;
    }
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

void * __stdcall
__kmp_launch_worker( void *arg )
{
    volatile void *stack_data;
    void *exit_val;
    void *padding = 0;
    kmp_info_t *this_thr = (kmp_info_t *) arg;
    int gtid;

    gtid = this_thr->th.th_info.ds.ds_gtid;
    __kmp_gtid_set_specific( gtid );
#ifdef KMP_TDATA_GTID
    #error "This define causes problems with LoadLibrary() + declspec(thread) " \
        "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
        "reference: http://support.microsoft.com/kb/118816"
    //__kmp_gtid = gtid;
#endif

#if USE_ITT_BUILD
    __kmp_itt_thread_name( gtid );
#endif /* USE_ITT_BUILD */

    __kmp_affinity_set_init_mask( gtid, FALSE );

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
    //
    // Set the FP control regs to be a copy of
    // the parallel initialization thread's.
    //
    __kmp_clear_x87_fpu_status_word();
    __kmp_load_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word );
    __kmp_load_mxcsr( &__kmp_init_mxcsr );
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

    if ( __kmp_stkoffset > 0 && gtid > 0 ) {
        padding = KMP_ALLOCA( gtid * __kmp_stkoffset );
    }

    KMP_FSYNC_RELEASING( &this_thr -> th.th_info.ds.ds_alive );
    this_thr -> th.th_info.ds.ds_thread_id = GetCurrentThreadId();
    TCW_4( this_thr -> th.th_info.ds.ds_alive, TRUE );

    if ( TCR_4(__kmp_gtid_mode) < 2 ) { // check stack only if it is used to get gtid
        TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
        KMP_ASSERT( this_thr -> th.th_info.ds.ds_stackgrow == FALSE );
        __kmp_check_stack_overlap( this_thr );
    }
    KMP_MB();
    exit_val = __kmp_launch_thread( this_thr );
    KMP_FSYNC_RELEASING( &this_thr -> th.th_info.ds.ds_alive );
    TCW_4( this_thr -> th.th_info.ds.ds_alive, FALSE );
    KMP_MB();
    return exit_val;
}


/* The monitor thread controls all of the threads in the complex */

void * __stdcall
__kmp_launch_monitor( void *arg )
{
    DWORD        wait_status;
    kmp_thread_t monitor;
    int          status;
    int          interval;
    kmp_info_t *this_thr = (kmp_info_t *) arg;

    KMP_DEBUG_ASSERT(__kmp_init_monitor);
    TCW_4( __kmp_init_monitor, 2 );    // AC: Signal the library that monitor has started
                                       // TODO: hide "2" in enum (like {true,false,started})
    this_thr -> th.th_info.ds.ds_thread_id = GetCurrentThreadId();
    TCW_4( this_thr -> th.th_info.ds.ds_alive, TRUE );

    KMP_MB();       /* Flush all pending memory write invalidates.  */
    KA_TRACE( 10, ("__kmp_launch_monitor: launched\n" ) );

    monitor = GetCurrentThread();

    /* set thread priority */
    status = SetThreadPriority( monitor, THREAD_PRIORITY_HIGHEST );
    if (! status) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantSetThreadPriority ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }

    /* register us as monitor */
    __kmp_gtid_set_specific( KMP_GTID_MONITOR );
#ifdef KMP_TDATA_GTID
    #error "This define causes problems with LoadLibrary() + declspec(thread) " \
        "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
        "reference: http://support.microsoft.com/kb/118816"
    //__kmp_gtid = KMP_GTID_MONITOR;
#endif

#if USE_ITT_BUILD
    __kmp_itt_thread_ignore();    // Instruct Intel(R) Threading Tools to ignore monitor thread.
#endif /* USE_ITT_BUILD */

    KMP_MB();       /* Flush all pending memory write invalidates.  */

    interval = ( 1000 / __kmp_monitor_wakeups ); /* in milliseconds */

    while (! TCR_4(__kmp_global.g.g_done)) {
        /*  This thread monitors the state of the system */

        KA_TRACE( 15, ( "__kmp_launch_monitor: update\n" ) );

        wait_status = WaitForSingleObject( __kmp_monitor_ev, interval );

        if (wait_status == WAIT_TIMEOUT) {
            TCW_4( __kmp_global.g.g_time.dt.t_value,
              TCR_4( __kmp_global.g.g_time.dt.t_value ) + 1 );
        }

        KMP_MB();       /* Flush all pending memory write invalidates.  */
    }

    KA_TRACE( 10, ("__kmp_launch_monitor: finished\n" ) );

    status = SetThreadPriority( monitor, THREAD_PRIORITY_NORMAL );
    if (! status) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantSetThreadPriority ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }

    if (__kmp_global.g.g_abort != 0) {
        /* now we need to terminate the worker threads   */
        /* the value of t_abort is the signal we caught */

        int gtid;

        KA_TRACE( 10, ("__kmp_launch_monitor: terminate sig=%d\n", (__kmp_global.g.g_abort) ) );

        /* terminate the OpenMP worker threads */
        /* TODO this is not valid for sibling threads!!
         * the uber master might not be 0 anymore.. */
        for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
            __kmp_terminate_thread( gtid );

        __kmp_cleanup();

        Sleep( 0 );

        KA_TRACE( 10, ("__kmp_launch_monitor: raise sig=%d\n", (__kmp_global.g.g_abort) ) );

        if (__kmp_global.g.g_abort > 0) {
            raise( __kmp_global.g.g_abort );
        }
    }

    TCW_4( this_thr -> th.th_info.ds.ds_alive, FALSE );

    KMP_MB();
    return arg;
}

void
__kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size )
{
    kmp_thread_t   handle;
    DWORD          idThread;

    KA_TRACE( 10, ("__kmp_create_worker: try to create thread (%d)\n", gtid ) );

    th->th.th_info.ds.ds_gtid = gtid;

    if ( KMP_UBER_GTID(gtid) ) {
        int     stack_data;

        /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for other threads to use.
           Is it appropriate to just use GetCurrentThread?  When should we close this handle?  When
           unregistering the root?
        */
        {
            BOOL rc;
            rc = DuplicateHandle(
                                 GetCurrentProcess(),
                                 GetCurrentThread(),
                                 GetCurrentProcess(),
                                 &th->th.th_info.ds.ds_thread,
                                 0,
                                 FALSE,
                                 DUPLICATE_SAME_ACCESS
                                 );
            KMP_ASSERT( rc );
            KA_TRACE( 10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, handle = %" KMP_UINTPTR_SPEC "\n",
                           (LPVOID)th,
                           th->th.th_info.ds.ds_thread ) );
            th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
        }
        if ( TCR_4(__kmp_gtid_mode) < 2 ) { // check stack only if it is used to get gtid
            /* we will dynamically update the stack range if gtid_mode == 1 */
            TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
            TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
            TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
            __kmp_check_stack_overlap( th );
        }
    }
    else {
        KMP_MB();       /* Flush all pending memory write invalidates.  */

        /* Set stack size for this thread now. */
        KA_TRACE( 10, ( "__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC
                        " bytes\n", stack_size ) );

        stack_size += gtid * __kmp_stkoffset;

        TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
        TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);

        KA_TRACE( 10, ( "__kmp_create_worker: (before) stack_size = %"
                        KMP_SIZE_T_SPEC
                        " bytes, &__kmp_launch_worker = %p, th = %p, "
                        "&idThread = %p\n",
                        (SIZE_T) stack_size,
                        (LPTHREAD_START_ROUTINE) & __kmp_launch_worker,
                        (LPVOID) th, &idThread ) );

            {
                handle = CreateThread( NULL, (SIZE_T) stack_size,
                                       (LPTHREAD_START_ROUTINE) __kmp_launch_worker,
                                       (LPVOID) th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread );
            }

        KA_TRACE( 10, ( "__kmp_create_worker: (after) stack_size = %"
                        KMP_SIZE_T_SPEC
                        " bytes, &__kmp_launch_worker = %p, th = %p, "
                        "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
                        (SIZE_T) stack_size,
                        (LPTHREAD_START_ROUTINE) & __kmp_launch_worker,
                        (LPVOID) th, idThread, handle ) );

            {
                if ( handle == 0 ) {
                    DWORD error = GetLastError();
                    __kmp_msg(
                              kmp_ms_fatal,
                              KMP_MSG( CantCreateThread ),
                              KMP_ERR( error ),
                              __kmp_msg_null
                              );
                } else {
                    th->th.th_info.ds.ds_thread = handle;
                }
            }
        KMP_MB();       /* Flush all pending memory write invalidates.  */
    }

    KA_TRACE( 10, ("__kmp_create_worker: done creating thread (%d)\n", gtid ) );
}

int
__kmp_still_running(kmp_info_t *th) {
    return (WAIT_TIMEOUT == WaitForSingleObject( th->th.th_info.ds.ds_thread, 0));
}

void
__kmp_create_monitor( kmp_info_t *th )
{
    kmp_thread_t        handle;
    DWORD               idThread;
    int                 ideal, new_ideal;

    KA_TRACE( 10, ("__kmp_create_monitor: try to create monitor\n" ) );

    KMP_MB();       /* Flush all pending memory write invalidates.  */

    __kmp_monitor_ev = CreateEvent( NULL, TRUE, FALSE, NULL );
    if ( __kmp_monitor_ev == NULL ) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantCreateEvent ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }; // if
#if USE_ITT_BUILD
    __kmp_itt_system_object_created( __kmp_monitor_ev, "Event" );
#endif /* USE_ITT_BUILD */

    th->th.th_info.ds.ds_tid  = KMP_GTID_MONITOR;
    th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;

    // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
    // to automatically expand stacksize based on CreateThread error code.
    if ( __kmp_monitor_stksize == 0 ) {
        __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
    }
    if ( __kmp_monitor_stksize < __kmp_sys_min_stksize ) {
        __kmp_monitor_stksize = __kmp_sys_min_stksize;
    }

    KA_TRACE( 10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
                   (int) __kmp_monitor_stksize ) );

    TCW_4( __kmp_global.g.g_time.dt.t_value, 0 );

    handle = CreateThread( NULL, (SIZE_T) __kmp_monitor_stksize,
                           (LPTHREAD_START_ROUTINE) __kmp_launch_monitor,
                           (LPVOID) th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread );
    if (handle == 0) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantCreateThread ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }
    else
        th->th.th_info.ds.ds_thread = handle;

    KMP_MB();       /* Flush all pending memory write invalidates.  */

    KA_TRACE( 10, ("__kmp_create_monitor: monitor created %p\n",
                   (void *) th->th.th_info.ds.ds_thread ) );
}

/*
  Check to see if thread is still alive.

  NOTE:  The ExitProcess(code) system call causes all threads to Terminate
         with a exit_val = code.  Because of this we can not rely on
         exit_val having any particular value.  So this routine may
         return STILL_ALIVE in exit_val even after the thread is dead.
*/

int
__kmp_is_thread_alive( kmp_info_t * th, DWORD *exit_val )
{
    DWORD rc;
    rc = GetExitCodeThread( th->th.th_info.ds.ds_thread, exit_val );
    if ( rc == 0 ) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( FunctionError, "GetExitCodeThread()" ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }; // if
    return ( *exit_val == STILL_ACTIVE );
}


void
__kmp_exit_thread(
    int exit_status
) {
    ExitThread( exit_status );
} // __kmp_exit_thread

/*
    This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
*/
static void
__kmp_reap_common( kmp_info_t * th )
{
    DWORD exit_val;

    KMP_MB();       /* Flush all pending memory write invalidates.  */

    KA_TRACE( 10, ( "__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid ) );

    /*
        2006-10-19:

        There are two opposite situations:

            1. Windows* OS keep thread alive after it resets ds_alive flag and exits from thread
               function. (For example, see C70770/Q394281 "unloading of dll based on OMP is very
               slow".)
            2. Windows* OS may kill thread before it resets ds_alive flag.

        Right solution seems to be waiting for *either* thread termination *or* ds_alive resetting.

    */

    {
        // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize KMP_WAIT_YIELD to
        // cover this usage also.
        void * obj = NULL;
        kmp_uint32 spins; 
#if USE_ITT_BUILD
        KMP_FSYNC_SPIN_INIT( obj, (void*) & th->th.th_info.ds.ds_alive );
#endif /* USE_ITT_BUILD */
        KMP_INIT_YIELD( spins );
        do {
#if USE_ITT_BUILD
            KMP_FSYNC_SPIN_PREPARE( obj );
#endif /* USE_ITT_BUILD */
            __kmp_is_thread_alive( th, &exit_val );
            KMP_YIELD( TCR_4(__kmp_nth) > __kmp_avail_proc );
            KMP_YIELD_SPIN( spins );
        } while ( exit_val == STILL_ACTIVE && TCR_4( th->th.th_info.ds.ds_alive ) );
#if USE_ITT_BUILD
        if ( exit_val == STILL_ACTIVE ) {
            KMP_FSYNC_CANCEL( obj );
        } else {
            KMP_FSYNC_SPIN_ACQUIRED( obj );
        }; // if
#endif /* USE_ITT_BUILD */
    }

    __kmp_free_handle( th->th.th_info.ds.ds_thread );

    /*
     * NOTE:  The ExitProcess(code) system call causes all threads to Terminate
     *        with a exit_val = code.  Because of this we can not rely on
     *        exit_val having any particular value.
     */
    if ( exit_val == STILL_ACTIVE ) {
        KA_TRACE( 1, ( "__kmp_reap_common: thread still active.\n" ) );
    } else if ( (void *) exit_val != (void *) th) {
        KA_TRACE( 1, ( "__kmp_reap_common: ExitProcess / TerminateThread used?\n" ) );
    }; // if

    KA_TRACE( 10,
        (
            "__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC "\n",
            th->th.th_info.ds.ds_gtid,
            th->th.th_info.ds.ds_thread
        )
    );

    th->th.th_info.ds.ds_thread    = 0;
    th->th.th_info.ds.ds_tid       = KMP_GTID_DNE;
    th->th.th_info.ds.ds_gtid      = KMP_GTID_DNE;
    th->th.th_info.ds.ds_thread_id = 0;

    KMP_MB();       /* Flush all pending memory write invalidates.  */
}

void
__kmp_reap_monitor( kmp_info_t *th )
{
    int status;

    KA_TRACE( 10, ("__kmp_reap_monitor: try to reap %p\n",
                   (void *) th->th.th_info.ds.ds_thread ) );

    // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
    // If both tid and gtid are 0, it means the monitor did not ever start.
    // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
    KMP_DEBUG_ASSERT( th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid );
    if ( th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR ) {
        return;
    }; // if

    KMP_MB();       /* Flush all pending memory write invalidates.  */

    status = SetEvent( __kmp_monitor_ev );
    if ( status == FALSE ) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantSetEvent ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }
    KA_TRACE( 10, ( "__kmp_reap_monitor: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid ) );
    __kmp_reap_common( th );

    __kmp_free_handle( __kmp_monitor_ev );

    KMP_MB();       /* Flush all pending memory write invalidates.  */
}

void
__kmp_reap_worker( kmp_info_t * th )
{
    KA_TRACE( 10, ( "__kmp_reap_worker: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid ) );
    __kmp_reap_common( th );
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

#if KMP_HANDLE_SIGNALS


static void
__kmp_team_handler( int signo )
{
    if ( __kmp_global.g.g_abort == 0 ) {
        // Stage 1 signal handler, let's shut down all of the threads.
        if ( __kmp_debug_buf ) {
            __kmp_dump_debug_buffer();
        }; // if
        KMP_MB();       // Flush all pending memory write invalidates.
        TCW_4( __kmp_global.g.g_abort, signo );
        KMP_MB();       // Flush all pending memory write invalidates.
        TCW_4( __kmp_global.g.g_done, TRUE );
        KMP_MB();       // Flush all pending memory write invalidates.
    }
} // __kmp_team_handler



static
sig_func_t __kmp_signal( int signum, sig_func_t handler ) {
    sig_func_t old = signal( signum, handler );
    if ( old == SIG_ERR ) {
        int error = errno;
        __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "signal" ), KMP_ERR( error ), __kmp_msg_null );
    }; // if
    return old;
}

static void
__kmp_install_one_handler(
    int           sig,
    sig_func_t    handler,
    int           parallel_init
) {
    sig_func_t old;
    KMP_MB();       /* Flush all pending memory write invalidates.  */
    KB_TRACE( 60, ("__kmp_install_one_handler: called: sig=%d\n", sig ) );
    if ( parallel_init ) {
        old = __kmp_signal( sig, handler );
        // SIG_DFL on Windows* OS in NULL or 0.
        if ( old == __kmp_sighldrs[ sig ] ) {
            __kmp_siginstalled[ sig ] = 1;
        } else {
            // Restore/keep user's handler if one previously installed.
            old = __kmp_signal( sig, old );
        }; // if
    } else {
        // Save initial/system signal handlers to see if user handlers installed.
        // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals called once with
        // parallel_init == TRUE.
        old = __kmp_signal( sig, SIG_DFL );
        __kmp_sighldrs[ sig ] = old;
        __kmp_signal( sig, old );
    }; // if
    KMP_MB();       /* Flush all pending memory write invalidates.  */
} // __kmp_install_one_handler

static void
__kmp_remove_one_handler( int sig ) {
    if ( __kmp_siginstalled[ sig ] ) {
        sig_func_t old;
        KMP_MB();       // Flush all pending memory write invalidates.
        KB_TRACE( 60, ( "__kmp_remove_one_handler: called: sig=%d\n", sig ) );
        old = __kmp_signal( sig, __kmp_sighldrs[ sig ] );
        if ( old != __kmp_team_handler ) {
            KB_TRACE( 10, ( "__kmp_remove_one_handler: oops, not our handler, restoring: sig=%d\n", sig ) );
            old = __kmp_signal( sig, old );
        }; // if
        __kmp_sighldrs[ sig ] = NULL;
        __kmp_siginstalled[ sig ] = 0;
        KMP_MB();       // Flush all pending memory write invalidates.
    }; // if
} // __kmp_remove_one_handler


void
__kmp_install_signals( int parallel_init )
{
    KB_TRACE( 10, ( "__kmp_install_signals: called\n" ) );
    if ( ! __kmp_handle_signals ) {
        KB_TRACE( 10, ( "__kmp_install_signals: KMP_HANDLE_SIGNALS is false - handlers not installed\n" ) );
        return;
    }; // if
    __kmp_install_one_handler( SIGINT,  __kmp_team_handler, parallel_init );
    __kmp_install_one_handler( SIGILL,  __kmp_team_handler, parallel_init );
    __kmp_install_one_handler( SIGABRT, __kmp_team_handler, parallel_init );
    __kmp_install_one_handler( SIGFPE,  __kmp_team_handler, parallel_init );
    __kmp_install_one_handler( SIGSEGV, __kmp_team_handler, parallel_init );
    __kmp_install_one_handler( SIGTERM, __kmp_team_handler, parallel_init );
} // __kmp_install_signals


void
__kmp_remove_signals( void )
{
    int sig;
    KB_TRACE( 10, ("__kmp_remove_signals: called\n" ) );
    for ( sig = 1; sig < NSIG; ++ sig ) {
        __kmp_remove_one_handler( sig );
    }; // for sig
} // __kmp_remove_signals


#endif // KMP_HANDLE_SIGNALS

/* Put the thread to sleep for a time period */
void
__kmp_thread_sleep( int millis )
{
    DWORD status;

    status = SleepEx( (DWORD) millis, FALSE );
    if ( status ) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( FunctionError, "SleepEx()" ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }
}

/* Determine whether the given address is mapped into the current address space. */
int
__kmp_is_address_mapped( void * addr )
{
    DWORD status;
    MEMORY_BASIC_INFORMATION lpBuffer;
    SIZE_T dwLength;

    dwLength = sizeof(MEMORY_BASIC_INFORMATION);

    status = VirtualQuery( addr, &lpBuffer, dwLength );

    return !((( lpBuffer.State == MEM_RESERVE) || ( lpBuffer.State == MEM_FREE )) ||
       (( lpBuffer.Protect == PAGE_NOACCESS ) || ( lpBuffer.Protect == PAGE_EXECUTE )));
}

kmp_uint64
__kmp_hardware_timestamp(void)
{
    kmp_uint64 r = 0;

    QueryPerformanceCounter((LARGE_INTEGER*) &r);
    return r;
}

/* Free handle and check the error code */
void
__kmp_free_handle( kmp_thread_t tHandle )
{
/* called with parameter type HANDLE also, thus suppose kmp_thread_t defined as HANDLE */
    BOOL rc;
    rc = CloseHandle( tHandle );
    if ( !rc ) {
        DWORD error = GetLastError();
        __kmp_msg(
            kmp_ms_fatal,
            KMP_MSG( CantCloseHandle ),
            KMP_ERR( error ),
            __kmp_msg_null
        );
    }
}

int
__kmp_get_load_balance( int max ) {

    static ULONG glb_buff_size = 100 * 1024;

    static int     glb_running_threads  = 0;  /* Saved count of the running threads for the thread balance algortihm */
    static double  glb_call_time        = 0;  /* Thread balance algorithm call time */

    int running_threads = 0;              // Number of running threads in the system.
    NTSTATUS  status        = 0;
    ULONG     buff_size     = 0;
    ULONG     info_size     = 0;
    void *    buffer        = NULL;
    PSYSTEM_PROCESS_INFORMATION spi = NULL;
    int first_time          = 1;

    double call_time = 0.0; //start, finish;

    __kmp_elapsed( & call_time );

    if ( glb_call_time &&
            ( call_time - glb_call_time < __kmp_load_balance_interval ) ) {
        running_threads = glb_running_threads;
        goto finish;
    }
    glb_call_time = call_time;

    // Do not spend time on running algorithm if we have a permanent error.
    if ( NtQuerySystemInformation == NULL ) {
        running_threads = -1;
        goto finish;
    }; // if

    if ( max <= 0 ) {
        max = INT_MAX;
    }; // if

    do {

        if ( first_time ) {
            buff_size = glb_buff_size;
        } else {
            buff_size = 2 * buff_size;
        }

        buffer = KMP_INTERNAL_REALLOC( buffer, buff_size );
        if ( buffer == NULL ) {
            running_threads = -1;
            goto finish;
        }; // if
        status = NtQuerySystemInformation( SystemProcessInformation, buffer, buff_size, & info_size );
        first_time = 0;

    } while ( status == STATUS_INFO_LENGTH_MISMATCH );
    glb_buff_size = buff_size;

    #define CHECK( cond )                       \
        {                                       \
            KMP_DEBUG_ASSERT( cond );           \
            if ( ! ( cond ) ) {                 \
                running_threads = -1;           \
                goto finish;                    \
            }                                   \
        }

    CHECK( buff_size >= info_size );
    spi = PSYSTEM_PROCESS_INFORMATION( buffer );
    for ( ; ; ) {
        ptrdiff_t offset = uintptr_t( spi ) - uintptr_t( buffer );
        CHECK( 0 <= offset && offset + sizeof( SYSTEM_PROCESS_INFORMATION ) < info_size );
        HANDLE pid = spi->ProcessId;
        ULONG num = spi->NumberOfThreads;
        CHECK( num >= 1 );
        size_t spi_size = sizeof( SYSTEM_PROCESS_INFORMATION ) + sizeof( SYSTEM_THREAD ) * ( num - 1 );
        CHECK( offset + spi_size < info_size );          // Make sure process info record fits the buffer.
        if ( spi->NextEntryOffset != 0 ) {
            CHECK( spi_size <= spi->NextEntryOffset );   // And do not overlap with the next record.
        }; // if
        // pid == 0 corresponds to the System Idle Process. It always has running threads
        // on all cores. So, we don't consider the running threads of this process.
        if ( pid != 0 ) {
            for ( int i = 0; i < num; ++ i ) {
                THREAD_STATE state = spi->Threads[ i ].State;
                // Count threads that have Ready or Running state.
                // !!! TODO: Why comment does not match the code???
                if ( state == StateRunning ) {
                    ++ running_threads;
                    // Stop counting running threads if the number is already greater than
                    // the number of available cores
                    if ( running_threads >= max ) {
                        goto finish;
                    }
                } // if
            }; // for i
        } // if
        if ( spi->NextEntryOffset == 0 ) {
            break;
        }; // if
        spi = PSYSTEM_PROCESS_INFORMATION( uintptr_t( spi ) + spi->NextEntryOffset );
    }; // forever

    #undef CHECK

    finish: // Clean up and exit.

        if ( buffer != NULL ) {
            KMP_INTERNAL_FREE( buffer );
        }; // if

        glb_running_threads = running_threads;

        return running_threads;

} //__kmp_get_load_balance()