1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
#ifndef KMP_STATS_H
#define KMP_STATS_H
/** @file kmp_stats.h
* Functions for collecting statistics.
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp_config.h"
#if KMP_STATS_ENABLED
/*
* Statistics accumulator.
* Accumulates number of samples and computes min, max, mean, standard deviation on the fly.
*
* Online variance calculation algorithm from http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm
*/
#include <limits>
#include <math.h>
#include <string>
#include <stdint.h>
#include <new> // placement new
#include "kmp_stats_timing.h"
/*
* Enable developer statistics here if you want them. They are more detailed than is useful for application characterisation and
* are intended for the runtime library developer.
*/
// #define KMP_DEVELOPER_STATS 1
/*!
* @ingroup STATS_GATHERING
* \brief flags to describe the statistic ( timers or counter )
*
*/
class stats_flags_e {
public:
const static int onlyInMaster = 1<<0; //!< statistic is valid only for master
const static int noUnits = 1<<1; //!< statistic doesn't need units printed next to it in output
const static int synthesized = 1<<2; //!< statistic's value is created atexit time in the __kmp_output_stats function
const static int notInMaster = 1<<3; //!< statistic is valid for non-master threads
const static int logEvent = 1<<4; //!< statistic can be logged when KMP_STATS_EVENTS is on (valid only for timers)
};
/*!
* \brief Add new counters under KMP_FOREACH_COUNTER() macro in kmp_stats.h
*
* @param macro a user defined macro that takes three arguments - macro(COUNTER_NAME, flags, arg)
* @param arg a user defined argument to send to the user defined macro
*
* \details A counter counts the occurrence of some event.
* Each thread accumulates its own count, at the end of execution the counts are aggregated treating each thread
* as a separate measurement. (Unless onlyInMaster is set, in which case there's only a single measurement).
* The min,mean,max are therefore the values for the threads.
* Adding the counter here and then putting a KMP_BLOCK_COUNTER(name) at the point you want to count is all you need to do.
* All of the tables and printing is generated from this macro.
* Format is "macro(name, flags, arg)"
*
* @ingroup STATS_GATHERING
*/
#define KMP_FOREACH_COUNTER(macro, arg) \
macro (OMP_PARALLEL, stats_flags_e::onlyInMaster, arg) \
macro (OMP_NESTED_PARALLEL, 0, arg) \
macro (OMP_FOR_static, 0, arg) \
macro (OMP_FOR_dynamic, 0, arg) \
macro (OMP_DISTRIBUTE, 0, arg) \
macro (OMP_BARRIER, 0, arg) \
macro (OMP_CRITICAL,0, arg) \
macro (OMP_SINGLE, 0, arg) \
macro (OMP_MASTER, 0, arg) \
macro (OMP_TEAMS, 0, arg) \
macro (OMP_set_lock, 0, arg) \
macro (OMP_test_lock, 0, arg) \
macro (REDUCE_wait, 0, arg) \
macro (REDUCE_nowait, 0, arg) \
macro (OMP_TASKYIELD, 0, arg) \
macro (TASK_executed, 0, arg) \
macro (TASK_cancelled, 0, arg) \
macro (TASK_stolen, 0, arg) \
macro (LAST,0,arg)
// OMP_PARALLEL_args -- the number of arguments passed to a fork
// FOR_static_iterations -- Number of available parallel chunks of work in a static for
// FOR_dynamic_iterations -- Number of available parallel chunks of work in a dynamic for
// Both adjust for any chunking, so if there were an iteration count of 20 but a chunk size of 10, we'd record 2.
/*!
* \brief Add new timers under KMP_FOREACH_TIMER() macro in kmp_stats.h
*
* @param macro a user defined macro that takes three arguments - macro(TIMER_NAME, flags, arg)
* @param arg a user defined argument to send to the user defined macro
*
* \details A timer collects multiple samples of some count in each thread and then finally aggregates over all the threads.
* The count is normally a time (in ticks), hence the name "timer". (But can be any value, so we use this for "number of arguments passed to fork"
* as well).
* For timers the threads are not significant, it's the individual observations that count, so the statistics are at that level.
* Format is "macro(name, flags, arg)"
*
* @ingroup STATS_GATHERING2
*/
#define KMP_FOREACH_TIMER(macro, arg) \
macro (OMP_start_end, stats_flags_e::onlyInMaster, arg) \
macro (OMP_serial, stats_flags_e::onlyInMaster, arg) \
macro (OMP_work, 0, arg) \
macro (Total_work, stats_flags_e::synthesized, arg) \
macro (OMP_barrier, 0, arg) \
macro (Total_barrier, stats_flags_e::synthesized, arg) \
macro (FOR_static_iterations, stats_flags_e::noUnits, arg) \
macro (FOR_static_scheduling, 0, arg) \
macro (FOR_dynamic_iterations, stats_flags_e::noUnits, arg) \
macro (FOR_dynamic_scheduling, 0, arg) \
macro (TASK_execution, 0, arg) \
macro (OMP_set_numthreads, stats_flags_e::noUnits, arg) \
macro (OMP_PARALLEL_args, stats_flags_e::noUnits, arg) \
macro (OMP_single, 0, arg) \
macro (OMP_master, 0, arg) \
KMP_FOREACH_DEVELOPER_TIMER(macro, arg) \
macro (LAST,0, arg)
// OMP_start_end -- time from when OpenMP is initialized until the stats are printed at exit
// OMP_serial -- thread zero time executing serial code
// OMP_work -- elapsed time in code dispatched by a fork (measured in the thread)
// Total_work -- a synthesized statistic summarizing how much parallel work each thread executed.
// OMP_barrier -- time at "real" barriers
// Total_barrier -- a synthesized statistic summarizing how much time at real barriers in each thread
// FOR_static_scheduling -- time spent doing scheduling for a static "for"
// FOR_dynamic_scheduling -- time spent doing scheduling for a dynamic "for"
#if (KMP_DEVELOPER_STATS)
// Timers which are of interest tio runtime library developers, not end users.
// THese have to be explicitly enabled in addition to the other stats.
// KMP_fork_barrier -- time in __kmp_fork_barrier
// KMP_join_barrier -- time in __kmp_join_barrier
// KMP_barrier -- time in __kmp_barrier
// KMP_end_split_barrier -- time in __kmp_end_split_barrier
// KMP_setup_icv_copy -- time in __kmp_setup_icv_copy
// KMP_icv_copy -- start/stop timer for any ICV copying
// KMP_linear_gather -- time in __kmp_linear_barrier_gather
// KMP_linear_release -- time in __kmp_linear_barrier_release
// KMP_tree_gather -- time in __kmp_tree_barrier_gather
// KMP_tree_release -- time in __kmp_tree_barrier_release
// KMP_hyper_gather -- time in __kmp_hyper_barrier_gather
// KMP_hyper_release -- time in __kmp_hyper_barrier_release
# define KMP_FOREACH_DEVELOPER_TIMER(macro, arg) \
macro (KMP_fork_call, 0, arg) \
macro (KMP_join_call, 0, arg) \
macro (KMP_fork_barrier, stats_flags_e::logEvent, arg) \
macro (KMP_join_barrier, stats_flags_e::logEvent, arg) \
macro (KMP_barrier, 0, arg) \
macro (KMP_end_split_barrier, 0, arg) \
macro (KMP_hier_gather, 0, arg) \
macro (KMP_hier_release, 0, arg) \
macro (KMP_hyper_gather, stats_flags_e::logEvent, arg) \
macro (KMP_hyper_release, stats_flags_e::logEvent, arg) \
macro (KMP_linear_gather, 0, arg) \
macro (KMP_linear_release, 0, arg) \
macro (KMP_tree_gather, 0, arg) \
macro (KMP_tree_release, 0, arg) \
macro (USER_master_invoke, stats_flags_e::logEvent, arg) \
macro (USER_worker_invoke, stats_flags_e::logEvent, arg) \
macro (USER_resume, stats_flags_e::logEvent, arg) \
macro (USER_suspend, stats_flags_e::logEvent, arg) \
macro (USER_launch_thread_loop, stats_flags_e::logEvent, arg) \
macro (KMP_allocate_team, 0, arg) \
macro (KMP_setup_icv_copy, 0, arg) \
macro (USER_icv_copy, 0, arg)
#else
# define KMP_FOREACH_DEVELOPER_TIMER(macro, arg)
#endif
/*!
* \brief Add new explicit timers under KMP_FOREACH_EXPLICIT_TIMER() macro.
*
* @param macro a user defined macro that takes three arguments - macro(TIMER_NAME, flags, arg)
* @param arg a user defined argument to send to the user defined macro
*
* \warning YOU MUST HAVE THE SAME NAMED TIMER UNDER KMP_FOREACH_TIMER() OR ELSE BAD THINGS WILL HAPPEN!
*
* \details Explicit timers are ones where we need to allocate a timer itself (as well as the accumulated timing statistics).
* We allocate these on a per-thread basis, and explicitly start and stop them.
* Block timers just allocate the timer itself on the stack, and use the destructor to notice block exit; they don't
* need to be defined here.
* The name here should be the same as that of a timer above.
*
* @ingroup STATS_GATHERING
*/
#define KMP_FOREACH_EXPLICIT_TIMER(macro, arg) \
macro(OMP_serial, 0, arg) \
macro(OMP_start_end, 0, arg) \
macro(OMP_single, 0, arg) \
macro(OMP_master, 0, arg) \
KMP_FOREACH_EXPLICIT_DEVELOPER_TIMER(macro,arg) \
macro(LAST, 0, arg)
#if (KMP_DEVELOPER_STATS)
# define KMP_FOREACH_EXPLICIT_DEVELOPER_TIMER(macro, arg) \
macro(USER_launch_thread_loop, stats_flags_e::logEvent, arg)
#else
# define KMP_FOREACH_EXPLICIT_DEVELOPER_TIMER(macro, arg)
#endif
#define ENUMERATE(name,ignore,prefix) prefix##name,
enum timer_e {
KMP_FOREACH_TIMER(ENUMERATE, TIMER_)
};
enum explicit_timer_e {
KMP_FOREACH_EXPLICIT_TIMER(ENUMERATE, EXPLICIT_TIMER_)
};
enum counter_e {
KMP_FOREACH_COUNTER(ENUMERATE, COUNTER_)
};
#undef ENUMERATE
class statistic
{
double minVal;
double maxVal;
double meanVal;
double m2;
uint64_t sampleCount;
public:
statistic() { reset(); }
statistic (statistic const &o): minVal(o.minVal), maxVal(o.maxVal), meanVal(o.meanVal), m2(o.m2), sampleCount(o.sampleCount) {}
double getMin() const { return minVal; }
double getMean() const { return meanVal; }
double getMax() const { return maxVal; }
uint64_t getCount() const { return sampleCount; }
double getSD() const { return sqrt(m2/sampleCount); }
double getTotal() const { return sampleCount*meanVal; }
void reset()
{
minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max();
meanVal= 0.0;
m2 = 0.0;
sampleCount = 0;
}
void addSample(double sample);
void scale (double factor);
void scaleDown(double f) { scale (1./f); }
statistic & operator+= (statistic const & other);
std::string format(char unit, bool total=false) const;
};
struct statInfo
{
const char * name;
uint32_t flags;
};
class timeStat : public statistic
{
static statInfo timerInfo[];
public:
timeStat() : statistic() {}
static const char * name(timer_e e) { return timerInfo[e].name; }
static bool masterOnly (timer_e e) { return timerInfo[e].flags & stats_flags_e::onlyInMaster; }
static bool workerOnly (timer_e e) { return timerInfo[e].flags & stats_flags_e::notInMaster; }
static bool noUnits (timer_e e) { return timerInfo[e].flags & stats_flags_e::noUnits; }
static bool synthesized(timer_e e) { return timerInfo[e].flags & stats_flags_e::synthesized; }
static bool logEvent (timer_e e) { return timerInfo[e].flags & stats_flags_e::logEvent; }
static void clearEventFlags() {
int i;
for(i=0;i<TIMER_LAST;i++) {
timerInfo[i].flags &= (~(stats_flags_e::logEvent));
}
}
};
// Where we need explicitly to start and end the timer, this version can be used
// Since these timers normally aren't nicely scoped, so don't have a good place to live
// on the stack of the thread, they're more work to use.
class explicitTimer
{
timeStat * stat;
tsc_tick_count startTime;
public:
explicitTimer () : stat(0), startTime(0) { }
explicitTimer (timeStat * s) : stat(s), startTime() { }
void setStat (timeStat *s) { stat = s; }
void start(timer_e timerEnumValue);
void stop(timer_e timerEnumValue);
void reset() { startTime = 0; }
};
// Where all you need is to time a block, this is enough.
// (It avoids the need to have an explicit end, leaving the scope suffices.)
class blockTimer : public explicitTimer
{
timer_e timerEnumValue;
public:
blockTimer (timeStat * s, timer_e newTimerEnumValue) : timerEnumValue(newTimerEnumValue), explicitTimer(s) { start(timerEnumValue); }
~blockTimer() { stop(timerEnumValue); }
};
// If all you want is a count, then you can use this...
// The individual per-thread counts will be aggregated into a statistic at program exit.
class counter
{
uint64_t value;
static const statInfo counterInfo[];
public:
counter() : value(0) {}
void increment() { value++; }
uint64_t getValue() const { return value; }
void reset() { value = 0; }
static const char * name(counter_e e) { return counterInfo[e].name; }
static bool masterOnly (counter_e e) { return counterInfo[e].flags & stats_flags_e::onlyInMaster; }
};
/* ****************************************************************
Class to implement an event
There are four components to an event: start time, stop time
nest_level, and timer_name.
The start and stop time should be obvious (recorded in clock ticks).
The nest_level relates to the bar width in the timeline graph.
The timer_name is used to determine which timer event triggered this event.
the interface to this class is through four read-only operations:
1) getStart() -- returns the start time as 64 bit integer
2) getStop() -- returns the stop time as 64 bit integer
3) getNestLevel() -- returns the nest level of the event
4) getTimerName() -- returns the timer name that triggered event
*MORE ON NEST_LEVEL*
The nest level is used in the bar graph that represents the timeline.
Its main purpose is for showing how events are nested inside eachother.
For example, say events, A, B, and C are recorded. If the timeline
looks like this:
Begin -------------------------------------------------------------> Time
| | | | | |
A B C C B A
start start start end end end
Then A, B, C will have a nest level of 1, 2, 3 respectively.
These values are then used to calculate the barwidth so you can
see that inside A, B has occurred, and inside B, C has occurred.
Currently, this is shown with A's bar width being larger than B's
bar width, and B's bar width being larger than C's bar width.
**************************************************************** */
class kmp_stats_event {
uint64_t start;
uint64_t stop;
int nest_level;
timer_e timer_name;
public:
kmp_stats_event() : start(0), stop(0), nest_level(0), timer_name(TIMER_LAST) {}
kmp_stats_event(uint64_t strt, uint64_t stp, int nst, timer_e nme) : start(strt), stop(stp), nest_level(nst), timer_name(nme) {}
inline uint64_t getStart() const { return start; }
inline uint64_t getStop() const { return stop; }
inline int getNestLevel() const { return nest_level; }
inline timer_e getTimerName() const { return timer_name; }
};
/* ****************************************************************
Class to implement a dynamically expandable array of events
---------------------------------------------------------
| event 1 | event 2 | event 3 | event 4 | ... | event N |
---------------------------------------------------------
An event is pushed onto the back of this array at every
explicitTimer->stop() call. The event records the thread #,
start time, stop time, and nest level related to the bar width.
The event vector starts at size INIT_SIZE and grows (doubles in size)
if needed. An implication of this behavior is that log(N)
reallocations are needed (where N is number of events). If you want
to avoid reallocations, then set INIT_SIZE to a large value.
the interface to this class is through six operations:
1) reset() -- sets the internal_size back to 0 but does not deallocate any memory
2) size() -- returns the number of valid elements in the vector
3) push_back(start, stop, nest, timer_name) -- pushes an event onto
the back of the array
4) deallocate() -- frees all memory associated with the vector
5) sort() -- sorts the vector by start time
6) operator[index] or at(index) -- returns event reference at that index
**************************************************************** */
class kmp_stats_event_vector {
kmp_stats_event* events;
int internal_size;
int allocated_size;
static const int INIT_SIZE = 1024;
public:
kmp_stats_event_vector() {
events = (kmp_stats_event*)__kmp_allocate(sizeof(kmp_stats_event)*INIT_SIZE);
internal_size = 0;
allocated_size = INIT_SIZE;
}
~kmp_stats_event_vector() {}
inline void reset() { internal_size = 0; }
inline int size() const { return internal_size; }
void push_back(uint64_t start_time, uint64_t stop_time, int nest_level, timer_e name) {
int i;
if(internal_size == allocated_size) {
kmp_stats_event* tmp = (kmp_stats_event*)__kmp_allocate(sizeof(kmp_stats_event)*allocated_size*2);
for(i=0;i<internal_size;i++) tmp[i] = events[i];
__kmp_free(events);
events = tmp;
allocated_size*=2;
}
events[internal_size] = kmp_stats_event(start_time, stop_time, nest_level, name);
internal_size++;
return;
}
void deallocate();
void sort();
const kmp_stats_event & operator[](int index) const { return events[index]; }
kmp_stats_event & operator[](int index) { return events[index]; }
const kmp_stats_event & at(int index) const { return events[index]; }
kmp_stats_event & at(int index) { return events[index]; }
};
/* ****************************************************************
Class to implement a doubly-linked, circular, statistics list
|---| ---> |---| ---> |---| ---> |---| ---> ... next
| | | | | | | |
|---| <--- |---| <--- |---| <--- |---| <--- ... prev
Sentinel first second third
Node node node node
The Sentinel Node is the user handle on the list.
The first node corresponds to thread 0's statistics.
The second node corresponds to thread 1's statistics and so on...
Each node has a _timers, _counters, and _explicitTimers array to
hold that thread's statistics. The _explicitTimers
point to the correct _timer and update its statistics at every stop() call.
The explicitTimers' pointers are set up in the constructor.
Each node also has an event vector to hold that thread's timing events.
The event vector expands as necessary and records the start-stop times
for each timer.
The nestLevel variable is for plotting events and is related
to the bar width in the timeline graph.
Every thread will have a __thread local pointer to its node in
the list. The sentinel node is used by the master thread to
store "dummy" statistics before __kmp_create_worker() is called.
**************************************************************** */
class kmp_stats_list {
int gtid;
timeStat _timers[TIMER_LAST+1];
counter _counters[COUNTER_LAST+1];
explicitTimer _explicitTimers[EXPLICIT_TIMER_LAST+1];
int _nestLevel; // one per thread
kmp_stats_event_vector _event_vector;
kmp_stats_list* next;
kmp_stats_list* prev;
public:
kmp_stats_list() : next(this) , prev(this) , _event_vector(), _nestLevel(0) {
#define doInit(name,ignore1,ignore2) \
getExplicitTimer(EXPLICIT_TIMER_##name)->setStat(getTimer(TIMER_##name));
KMP_FOREACH_EXPLICIT_TIMER(doInit,0);
#undef doInit
}
~kmp_stats_list() { }
inline timeStat * getTimer(timer_e idx) { return &_timers[idx]; }
inline counter * getCounter(counter_e idx) { return &_counters[idx]; }
inline explicitTimer * getExplicitTimer(explicit_timer_e idx) { return &_explicitTimers[idx]; }
inline timeStat * getTimers() { return _timers; }
inline counter * getCounters() { return _counters; }
inline explicitTimer * getExplicitTimers() { return _explicitTimers; }
inline kmp_stats_event_vector & getEventVector() { return _event_vector; }
inline void resetEventVector() { _event_vector.reset(); }
inline void incrementNestValue() { _nestLevel++; }
inline int getNestValue() { return _nestLevel; }
inline void decrementNestValue() { _nestLevel--; }
inline int getGtid() const { return gtid; }
inline void setGtid(int newgtid) { gtid = newgtid; }
kmp_stats_list* push_back(int gtid); // returns newly created list node
inline void push_event(uint64_t start_time, uint64_t stop_time, int nest_level, timer_e name) {
_event_vector.push_back(start_time, stop_time, nest_level, name);
}
void deallocate();
class iterator;
kmp_stats_list::iterator begin();
kmp_stats_list::iterator end();
int size();
class iterator {
kmp_stats_list* ptr;
friend kmp_stats_list::iterator kmp_stats_list::begin();
friend kmp_stats_list::iterator kmp_stats_list::end();
public:
iterator();
~iterator();
iterator operator++();
iterator operator++(int dummy);
iterator operator--();
iterator operator--(int dummy);
bool operator!=(const iterator & rhs);
bool operator==(const iterator & rhs);
kmp_stats_list* operator*() const; // dereference operator
};
};
/* ****************************************************************
Class to encapsulate all output functions and the environment variables
This module holds filenames for various outputs (normal stats, events, plot file),
as well as coloring information for the plot file.
The filenames and flags variables are read from environment variables.
These are read once by the constructor of the global variable __kmp_stats_output
which calls init().
During this init() call, event flags for the timeStat::timerInfo[] global array
are cleared if KMP_STATS_EVENTS is not true (on, 1, yes).
The only interface function that is public is outputStats(heading). This function
should print out everything it needs to, either to files or stderr,
depending on the environment variables described below
ENVIRONMENT VARIABLES:
KMP_STATS_FILE -- if set, all statistics (not events) will be printed to this file,
otherwise, print to stderr
KMP_STATS_THREADS -- if set to "on", then will print per thread statistics to either
KMP_STATS_FILE or stderr
KMP_STATS_PLOT_FILE -- if set, print the ploticus plot file to this filename,
otherwise, the plot file is sent to "events.plt"
KMP_STATS_EVENTS -- if set to "on", then log events, otherwise, don't log events
KMP_STATS_EVENTS_FILE -- if set, all events are outputted to this file,
otherwise, output is sent to "events.dat"
**************************************************************** */
class kmp_stats_output_module {
public:
struct rgb_color {
float r;
float g;
float b;
};
private:
static const char* outputFileName;
static const char* eventsFileName;
static const char* plotFileName;
static int printPerThreadFlag;
static int printPerThreadEventsFlag;
static const rgb_color globalColorArray[];
static rgb_color timerColorInfo[];
void init();
static void setupEventColors();
static void printPloticusFile();
static void printStats(FILE *statsOut, statistic const * theStats, bool areTimers);
static void printCounters(FILE * statsOut, counter const * theCounters);
static void printEvents(FILE * eventsOut, kmp_stats_event_vector* theEvents, int gtid);
static rgb_color getEventColor(timer_e e) { return timerColorInfo[e]; }
static void windupExplicitTimers();
bool eventPrintingEnabled() {
if(printPerThreadEventsFlag) return true;
else return false;
}
bool perThreadPrintingEnabled() {
if(printPerThreadFlag) return true;
else return false;
}
public:
kmp_stats_output_module() { init(); }
void outputStats(const char* heading);
};
#ifdef __cplusplus
extern "C" {
#endif
void __kmp_stats_init();
void __kmp_reset_stats();
void __kmp_output_stats(const char *);
void __kmp_accumulate_stats_at_exit(void);
// thread local pointer to stats node within list
extern __thread kmp_stats_list* __kmp_stats_thread_ptr;
// head to stats list.
extern kmp_stats_list __kmp_stats_list;
// lock for __kmp_stats_list
extern kmp_tas_lock_t __kmp_stats_lock;
// reference start time
extern tsc_tick_count __kmp_stats_start_time;
// interface to output
extern kmp_stats_output_module __kmp_stats_output;
#ifdef __cplusplus
}
#endif
// Simple, standard interfaces that drop out completely if stats aren't enabled
/*!
* \brief Uses specified timer (name) to time code block.
*
* @param name timer name as specified under the KMP_FOREACH_TIMER() macro
*
* \details Use KMP_TIME_BLOCK(name) macro to time a code block. This will record the time taken in the block
* and use the destructor to stop the timer. Convenient!
* With this definition you can't have more than one KMP_TIME_BLOCK in the same code block.
* I don't think that's a problem.
*
* @ingroup STATS_GATHERING
*/
#define KMP_TIME_BLOCK(name) \
blockTimer __BLOCKTIME__(__kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name)
/*!
* \brief Adds value to specified timer (name).
*
* @param name timer name as specified under the KMP_FOREACH_TIMER() macro
* @param value double precision sample value to add to statistics for the timer
*
* \details Use KMP_COUNT_VALUE(name, value) macro to add a particular value to a timer statistics.
*
* @ingroup STATS_GATHERING
*/
#define KMP_COUNT_VALUE(name, value) \
__kmp_stats_thread_ptr->getTimer(TIMER_##name)->addSample(value)
/*!
* \brief Increments specified counter (name).
*
* @param name counter name as specified under the KMP_FOREACH_COUNTER() macro
*
* \details Use KMP_COUNT_BLOCK(name, value) macro to increment a statistics counter for the executing thread.
*
* @ingroup STATS_GATHERING
*/
#define KMP_COUNT_BLOCK(name) \
__kmp_stats_thread_ptr->getCounter(COUNTER_##name)->increment()
/*!
* \brief "Starts" an explicit timer which will need a corresponding KMP_STOP_EXPLICIT_TIMER() macro.
*
* @param name explicit timer name as specified under the KMP_FOREACH_EXPLICIT_TIMER() macro
*
* \details Use to start a timer. This will need a corresponding KMP_STOP_EXPLICIT_TIMER()
* macro to stop the timer unlike the KMP_TIME_BLOCK(name) macro which has an implicit stopping macro at the end
* of the code block. All explicit timers are stopped at library exit time before the final statistics are outputted.
*
* @ingroup STATS_GATHERING
*/
#define KMP_START_EXPLICIT_TIMER(name) \
__kmp_stats_thread_ptr->getExplicitTimer(EXPLICIT_TIMER_##name)->start(TIMER_##name)
/*!
* \brief "Stops" an explicit timer.
*
* @param name explicit timer name as specified under the KMP_FOREACH_EXPLICIT_TIMER() macro
*
* \details Use KMP_STOP_EXPLICIT_TIMER(name) to stop a timer. When this is done, the time between the last KMP_START_EXPLICIT_TIMER(name)
* and this KMP_STOP_EXPLICIT_TIMER(name) will be added to the timer's stat value. The timer will then be reset.
* After the KMP_STOP_EXPLICIT_TIMER(name) macro is called, another call to KMP_START_EXPLICIT_TIMER(name) will start the timer once again.
*
* @ingroup STATS_GATHERING
*/
#define KMP_STOP_EXPLICIT_TIMER(name) \
__kmp_stats_thread_ptr->getExplicitTimer(EXPLICIT_TIMER_##name)->stop(TIMER_##name)
/*!
* \brief Outputs the current thread statistics and reset them.
*
* @param heading_string heading put above the final stats output
*
* \details Explicitly stops all timers and outputs all stats.
* Environment variable, `OMPTB_STATSFILE=filename`, can be used to output the stats to a filename instead of stderr
* Environment variable, `OMPTB_STATSTHREADS=true|undefined`, can be used to output thread specific stats
* For now the `OMPTB_STATSTHREADS` environment variable can either be defined with any value, which will print out thread
* specific stats, or it can be undefined (not specified in the environment) and thread specific stats won't be printed
* It should be noted that all statistics are reset when this macro is called.
*
* @ingroup STATS_GATHERING
*/
#define KMP_OUTPUT_STATS(heading_string) \
__kmp_output_stats(heading_string)
/*!
* \brief resets all stats (counters to 0, timers to 0 elapsed ticks)
*
* \details Reset all stats for all threads.
*
* @ingroup STATS_GATHERING
*/
#define KMP_RESET_STATS() __kmp_reset_stats()
#if (KMP_DEVELOPER_STATS)
# define KMP_TIME_DEVELOPER_BLOCK(n) KMP_TIME_BLOCK(n)
# define KMP_COUNT_DEVELOPER_VALUE(n,v) KMP_COUNT_VALUE(n,v)
# define KMP_COUNT_DEVELOPER_BLOCK(n) KMP_COUNT_BLOCK(n)
# define KMP_START_DEVELOPER_EXPLICIT_TIMER(n) KMP_START_EXPLICIT_TIMER(n)
# define KMP_STOP_DEVELOPER_EXPLICIT_TIMER(n) KMP_STOP_EXPLICIT_TIMER(n)
#else
// Null definitions
# define KMP_TIME_DEVELOPER_BLOCK(n) ((void)0)
# define KMP_COUNT_DEVELOPER_VALUE(n,v) ((void)0)
# define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
# define KMP_START_DEVELOPER_EXPLICIT_TIMER(n) ((void)0)
# define KMP_STOP_DEVELOPER_EXPLICIT_TIMER(n) ((void)0)
#endif
#else // KMP_STATS_ENABLED
// Null definitions
#define KMP_TIME_BLOCK(n) ((void)0)
#define KMP_COUNT_VALUE(n,v) ((void)0)
#define KMP_COUNT_BLOCK(n) ((void)0)
#define KMP_START_EXPLICIT_TIMER(n) ((void)0)
#define KMP_STOP_EXPLICIT_TIMER(n) ((void)0)
#define KMP_OUTPUT_STATS(heading_string) ((void)0)
#define KMP_RESET_STATS() ((void)0)
#define KMP_TIME_DEVELOPER_BLOCK(n) ((void)0)
#define KMP_COUNT_DEVELOPER_VALUE(n,v) ((void)0)
#define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
#define KMP_START_DEVELOPER_EXPLICIT_TIMER(n) ((void)0)
#define KMP_STOP_DEVELOPER_EXPLICIT_TIMER(n) ((void)0)
#endif // KMP_STATS_ENABLED
#endif // KMP_STATS_H
|