1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
|
/*
* kmp_affinity.h -- header for affinity management
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef KMP_AFFINITY_H
#define KMP_AFFINITY_H
#include "kmp.h"
#include "kmp_os.h"
#include <limits>
#if KMP_AFFINITY_SUPPORTED
#if KMP_USE_HWLOC
class KMPHwlocAffinity : public KMPAffinity {
public:
class Mask : public KMPAffinity::Mask {
hwloc_cpuset_t mask;
public:
Mask() {
mask = hwloc_bitmap_alloc();
this->zero();
}
~Mask() { hwloc_bitmap_free(mask); }
void set(int i) override { hwloc_bitmap_set(mask, i); }
bool is_set(int i) const override { return hwloc_bitmap_isset(mask, i); }
void clear(int i) override { hwloc_bitmap_clr(mask, i); }
void zero() override { hwloc_bitmap_zero(mask); }
void copy(const KMPAffinity::Mask *src) override {
const Mask *convert = static_cast<const Mask *>(src);
hwloc_bitmap_copy(mask, convert->mask);
}
void bitwise_and(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
hwloc_bitmap_and(mask, mask, convert->mask);
}
void bitwise_or(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
hwloc_bitmap_or(mask, mask, convert->mask);
}
void bitwise_not() override { hwloc_bitmap_not(mask, mask); }
int begin() const override { return hwloc_bitmap_first(mask); }
int end() const override { return -1; }
int next(int previous) const override {
return hwloc_bitmap_next(mask, previous);
}
int get_system_affinity(bool abort_on_error) override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal get affinity operation when not capable");
long retval =
hwloc_get_cpubind(__kmp_hwloc_topology, mask, HWLOC_CPUBIND_THREAD);
if (retval >= 0) {
return 0;
}
int error = errno;
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
}
return error;
}
int set_system_affinity(bool abort_on_error) const override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set affinity operation when not capable");
long retval =
hwloc_set_cpubind(__kmp_hwloc_topology, mask, HWLOC_CPUBIND_THREAD);
if (retval >= 0) {
return 0;
}
int error = errno;
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
}
return error;
}
#if KMP_OS_WINDOWS
int set_process_affinity(bool abort_on_error) const override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set process affinity operation when not capable");
int error = 0;
const hwloc_topology_support *support =
hwloc_topology_get_support(__kmp_hwloc_topology);
if (support->cpubind->set_proc_cpubind) {
int retval;
retval = hwloc_set_cpubind(__kmp_hwloc_topology, mask,
HWLOC_CPUBIND_PROCESS);
if (retval >= 0)
return 0;
error = errno;
if (abort_on_error)
__kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
}
return error;
}
#endif
int get_proc_group() const override {
int group = -1;
#if KMP_OS_WINDOWS
if (__kmp_num_proc_groups == 1) {
return 1;
}
for (int i = 0; i < __kmp_num_proc_groups; i++) {
// On windows, the long type is always 32 bits
unsigned long first_32_bits = hwloc_bitmap_to_ith_ulong(mask, i * 2);
unsigned long second_32_bits =
hwloc_bitmap_to_ith_ulong(mask, i * 2 + 1);
if (first_32_bits == 0 && second_32_bits == 0) {
continue;
}
if (group >= 0) {
return -1;
}
group = i;
}
#endif /* KMP_OS_WINDOWS */
return group;
}
};
void determine_capable(const char *var) override {
const hwloc_topology_support *topology_support;
if (__kmp_hwloc_topology == NULL) {
if (hwloc_topology_init(&__kmp_hwloc_topology) < 0) {
__kmp_hwloc_error = TRUE;
if (__kmp_affinity_verbose)
KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_init()");
}
if (hwloc_topology_load(__kmp_hwloc_topology) < 0) {
__kmp_hwloc_error = TRUE;
if (__kmp_affinity_verbose)
KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_load()");
}
}
topology_support = hwloc_topology_get_support(__kmp_hwloc_topology);
// Is the system capable of setting/getting this thread's affinity?
// Also, is topology discovery possible? (pu indicates ability to discover
// processing units). And finally, were there no errors when calling any
// hwloc_* API functions?
if (topology_support && topology_support->cpubind->set_thisthread_cpubind &&
topology_support->cpubind->get_thisthread_cpubind &&
topology_support->discovery->pu && !__kmp_hwloc_error) {
// enables affinity according to KMP_AFFINITY_CAPABLE() macro
KMP_AFFINITY_ENABLE(TRUE);
} else {
// indicate that hwloc didn't work and disable affinity
__kmp_hwloc_error = TRUE;
KMP_AFFINITY_DISABLE();
}
}
void bind_thread(int which) override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set affinity operation when not capable");
KMPAffinity::Mask *mask;
KMP_CPU_ALLOC_ON_STACK(mask);
KMP_CPU_ZERO(mask);
KMP_CPU_SET(which, mask);
__kmp_set_system_affinity(mask, TRUE);
KMP_CPU_FREE_FROM_STACK(mask);
}
KMPAffinity::Mask *allocate_mask() override { return new Mask(); }
void deallocate_mask(KMPAffinity::Mask *m) override { delete m; }
KMPAffinity::Mask *allocate_mask_array(int num) override {
return new Mask[num];
}
void deallocate_mask_array(KMPAffinity::Mask *array) override {
Mask *hwloc_array = static_cast<Mask *>(array);
delete[] hwloc_array;
}
KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
int index) override {
Mask *hwloc_array = static_cast<Mask *>(array);
return &(hwloc_array[index]);
}
api_type get_api_type() const override { return HWLOC; }
};
#endif /* KMP_USE_HWLOC */
#if KMP_OS_LINUX || KMP_OS_FREEBSD
#if KMP_OS_LINUX
/* On some of the older OS's that we build on, these constants aren't present
in <asm/unistd.h> #included from <sys.syscall.h>. They must be the same on
all systems of the same arch where they are defined, and they cannot change.
stone forever. */
#include <sys/syscall.h>
#if KMP_ARCH_X86 || KMP_ARCH_ARM
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 241
#elif __NR_sched_setaffinity != 241
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 242
#elif __NR_sched_getaffinity != 242
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_AARCH64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 122
#elif __NR_sched_setaffinity != 122
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 123
#elif __NR_sched_getaffinity != 123
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_X86_64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 203
#elif __NR_sched_setaffinity != 203
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 204
#elif __NR_sched_getaffinity != 204
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_PPC64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 222
#elif __NR_sched_setaffinity != 222
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 223
#elif __NR_sched_getaffinity != 223
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_MIPS
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 4239
#elif __NR_sched_setaffinity != 4239
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 4240
#elif __NR_sched_getaffinity != 4240
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_MIPS64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 5195
#elif __NR_sched_setaffinity != 5195
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 5196
#elif __NR_sched_getaffinity != 5196
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#error Unknown or unsupported architecture
#endif /* KMP_ARCH_* */
#elif KMP_OS_FREEBSD
#include <pthread.h>
#include <pthread_np.h>
#endif
class KMPNativeAffinity : public KMPAffinity {
class Mask : public KMPAffinity::Mask {
typedef unsigned long mask_t;
typedef decltype(__kmp_affin_mask_size) mask_size_type;
static const unsigned int BITS_PER_MASK_T = sizeof(mask_t) * CHAR_BIT;
static const mask_t ONE = 1;
mask_size_type get_num_mask_types() const {
return __kmp_affin_mask_size / sizeof(mask_t);
}
public:
mask_t *mask;
Mask() { mask = (mask_t *)__kmp_allocate(__kmp_affin_mask_size); }
~Mask() {
if (mask)
__kmp_free(mask);
}
void set(int i) override {
mask[i / BITS_PER_MASK_T] |= (ONE << (i % BITS_PER_MASK_T));
}
bool is_set(int i) const override {
return (mask[i / BITS_PER_MASK_T] & (ONE << (i % BITS_PER_MASK_T)));
}
void clear(int i) override {
mask[i / BITS_PER_MASK_T] &= ~(ONE << (i % BITS_PER_MASK_T));
}
void zero() override {
mask_size_type e = get_num_mask_types();
for (mask_size_type i = 0; i < e; ++i)
mask[i] = (mask_t)0;
}
void copy(const KMPAffinity::Mask *src) override {
const Mask *convert = static_cast<const Mask *>(src);
mask_size_type e = get_num_mask_types();
for (mask_size_type i = 0; i < e; ++i)
mask[i] = convert->mask[i];
}
void bitwise_and(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
mask_size_type e = get_num_mask_types();
for (mask_size_type i = 0; i < e; ++i)
mask[i] &= convert->mask[i];
}
void bitwise_or(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
mask_size_type e = get_num_mask_types();
for (mask_size_type i = 0; i < e; ++i)
mask[i] |= convert->mask[i];
}
void bitwise_not() override {
mask_size_type e = get_num_mask_types();
for (mask_size_type i = 0; i < e; ++i)
mask[i] = ~(mask[i]);
}
int begin() const override {
int retval = 0;
while (retval < end() && !is_set(retval))
++retval;
return retval;
}
int end() const override {
int e;
__kmp_type_convert(get_num_mask_types() * BITS_PER_MASK_T, &e);
return e;
}
int next(int previous) const override {
int retval = previous + 1;
while (retval < end() && !is_set(retval))
++retval;
return retval;
}
int get_system_affinity(bool abort_on_error) override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal get affinity operation when not capable");
#if KMP_OS_LINUX
long retval =
syscall(__NR_sched_getaffinity, 0, __kmp_affin_mask_size, mask);
#elif KMP_OS_FREEBSD
int r = pthread_getaffinity_np(pthread_self(), __kmp_affin_mask_size,
reinterpret_cast<cpuset_t *>(mask));
int retval = (r == 0 ? 0 : -1);
#endif
if (retval >= 0) {
return 0;
}
int error = errno;
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
}
return error;
}
int set_system_affinity(bool abort_on_error) const override {
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set affinity operation when not capable");
#if KMP_OS_LINUX
long retval =
syscall(__NR_sched_setaffinity, 0, __kmp_affin_mask_size, mask);
#elif KMP_OS_FREEBSD
int r = pthread_setaffinity_np(pthread_self(), __kmp_affin_mask_size,
reinterpret_cast<cpuset_t *>(mask));
int retval = (r == 0 ? 0 : -1);
#endif
if (retval >= 0) {
return 0;
}
int error = errno;
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
}
return error;
}
};
void determine_capable(const char *env_var) override {
__kmp_affinity_determine_capable(env_var);
}
void bind_thread(int which) override { __kmp_affinity_bind_thread(which); }
KMPAffinity::Mask *allocate_mask() override {
KMPNativeAffinity::Mask *retval = new Mask();
return retval;
}
void deallocate_mask(KMPAffinity::Mask *m) override {
KMPNativeAffinity::Mask *native_mask =
static_cast<KMPNativeAffinity::Mask *>(m);
delete native_mask;
}
KMPAffinity::Mask *allocate_mask_array(int num) override {
return new Mask[num];
}
void deallocate_mask_array(KMPAffinity::Mask *array) override {
Mask *linux_array = static_cast<Mask *>(array);
delete[] linux_array;
}
KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
int index) override {
Mask *linux_array = static_cast<Mask *>(array);
return &(linux_array[index]);
}
api_type get_api_type() const override { return NATIVE_OS; }
};
#endif /* KMP_OS_LINUX || KMP_OS_FREEBSD */
#if KMP_OS_WINDOWS
class KMPNativeAffinity : public KMPAffinity {
class Mask : public KMPAffinity::Mask {
typedef ULONG_PTR mask_t;
static const int BITS_PER_MASK_T = sizeof(mask_t) * CHAR_BIT;
mask_t *mask;
public:
Mask() {
mask = (mask_t *)__kmp_allocate(sizeof(mask_t) * __kmp_num_proc_groups);
}
~Mask() {
if (mask)
__kmp_free(mask);
}
void set(int i) override {
mask[i / BITS_PER_MASK_T] |= ((mask_t)1 << (i % BITS_PER_MASK_T));
}
bool is_set(int i) const override {
return (mask[i / BITS_PER_MASK_T] & ((mask_t)1 << (i % BITS_PER_MASK_T)));
}
void clear(int i) override {
mask[i / BITS_PER_MASK_T] &= ~((mask_t)1 << (i % BITS_PER_MASK_T));
}
void zero() override {
for (int i = 0; i < __kmp_num_proc_groups; ++i)
mask[i] = 0;
}
void copy(const KMPAffinity::Mask *src) override {
const Mask *convert = static_cast<const Mask *>(src);
for (int i = 0; i < __kmp_num_proc_groups; ++i)
mask[i] = convert->mask[i];
}
void bitwise_and(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
for (int i = 0; i < __kmp_num_proc_groups; ++i)
mask[i] &= convert->mask[i];
}
void bitwise_or(const KMPAffinity::Mask *rhs) override {
const Mask *convert = static_cast<const Mask *>(rhs);
for (int i = 0; i < __kmp_num_proc_groups; ++i)
mask[i] |= convert->mask[i];
}
void bitwise_not() override {
for (int i = 0; i < __kmp_num_proc_groups; ++i)
mask[i] = ~(mask[i]);
}
int begin() const override {
int retval = 0;
while (retval < end() && !is_set(retval))
++retval;
return retval;
}
int end() const override { return __kmp_num_proc_groups * BITS_PER_MASK_T; }
int next(int previous) const override {
int retval = previous + 1;
while (retval < end() && !is_set(retval))
++retval;
return retval;
}
int set_process_affinity(bool abort_on_error) const override {
if (__kmp_num_proc_groups <= 1) {
if (!SetProcessAffinityMask(GetCurrentProcess(), *mask)) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(CantSetThreadAffMask), KMP_ERR(error),
__kmp_msg_null);
}
return error;
}
}
return 0;
}
int set_system_affinity(bool abort_on_error) const override {
if (__kmp_num_proc_groups > 1) {
// Check for a valid mask.
GROUP_AFFINITY ga;
int group = get_proc_group();
if (group < 0) {
if (abort_on_error) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
return -1;
}
// Transform the bit vector into a GROUP_AFFINITY struct
// and make the system call to set affinity.
ga.Group = group;
ga.Mask = mask[group];
ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(CantSetThreadAffMask), KMP_ERR(error),
__kmp_msg_null);
}
return error;
}
} else {
if (!SetThreadAffinityMask(GetCurrentThread(), *mask)) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(CantSetThreadAffMask), KMP_ERR(error),
__kmp_msg_null);
}
return error;
}
}
return 0;
}
int get_system_affinity(bool abort_on_error) override {
if (__kmp_num_proc_groups > 1) {
this->zero();
GROUP_AFFINITY ga;
KMP_DEBUG_ASSERT(__kmp_GetThreadGroupAffinity != NULL);
if (__kmp_GetThreadGroupAffinity(GetCurrentThread(), &ga) == 0) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FunctionError, "GetThreadGroupAffinity()"),
KMP_ERR(error), __kmp_msg_null);
}
return error;
}
if ((ga.Group < 0) || (ga.Group > __kmp_num_proc_groups) ||
(ga.Mask == 0)) {
return -1;
}
mask[ga.Group] = ga.Mask;
} else {
mask_t newMask, sysMask, retval;
if (!GetProcessAffinityMask(GetCurrentProcess(), &newMask, &sysMask)) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FunctionError, "GetProcessAffinityMask()"),
KMP_ERR(error), __kmp_msg_null);
}
return error;
}
retval = SetThreadAffinityMask(GetCurrentThread(), newMask);
if (!retval) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
KMP_ERR(error), __kmp_msg_null);
}
return error;
}
newMask = SetThreadAffinityMask(GetCurrentThread(), retval);
if (!newMask) {
DWORD error = GetLastError();
if (abort_on_error) {
__kmp_fatal(KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
KMP_ERR(error), __kmp_msg_null);
}
}
*mask = retval;
}
return 0;
}
int get_proc_group() const override {
int group = -1;
if (__kmp_num_proc_groups == 1) {
return 1;
}
for (int i = 0; i < __kmp_num_proc_groups; i++) {
if (mask[i] == 0)
continue;
if (group >= 0)
return -1;
group = i;
}
return group;
}
};
void determine_capable(const char *env_var) override {
__kmp_affinity_determine_capable(env_var);
}
void bind_thread(int which) override { __kmp_affinity_bind_thread(which); }
KMPAffinity::Mask *allocate_mask() override { return new Mask(); }
void deallocate_mask(KMPAffinity::Mask *m) override { delete m; }
KMPAffinity::Mask *allocate_mask_array(int num) override {
return new Mask[num];
}
void deallocate_mask_array(KMPAffinity::Mask *array) override {
Mask *windows_array = static_cast<Mask *>(array);
delete[] windows_array;
}
KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
int index) override {
Mask *windows_array = static_cast<Mask *>(array);
return &(windows_array[index]);
}
api_type get_api_type() const override { return NATIVE_OS; }
};
#endif /* KMP_OS_WINDOWS */
#endif /* KMP_AFFINITY_SUPPORTED */
// Describe an attribute for a level in the machine topology
struct kmp_hw_attr_t {
int core_type : 8;
int core_eff : 8;
unsigned valid : 1;
unsigned reserved : 15;
static const int UNKNOWN_CORE_EFF = -1;
kmp_hw_attr_t()
: core_type(KMP_HW_CORE_TYPE_UNKNOWN), core_eff(UNKNOWN_CORE_EFF),
valid(0), reserved(0) {}
void set_core_type(kmp_hw_core_type_t type) {
valid = 1;
core_type = type;
}
void set_core_eff(int eff) {
valid = 1;
core_eff = eff;
}
kmp_hw_core_type_t get_core_type() const {
return (kmp_hw_core_type_t)core_type;
}
int get_core_eff() const { return core_eff; }
bool is_core_type_valid() const {
return core_type != KMP_HW_CORE_TYPE_UNKNOWN;
}
bool is_core_eff_valid() const { return core_eff != UNKNOWN_CORE_EFF; }
operator bool() const { return valid; }
void clear() {
core_type = KMP_HW_CORE_TYPE_UNKNOWN;
core_eff = UNKNOWN_CORE_EFF;
valid = 0;
}
bool contains(const kmp_hw_attr_t &other) const {
if (!valid && !other.valid)
return true;
if (valid && other.valid) {
if (other.is_core_type_valid()) {
if (!is_core_type_valid() || (get_core_type() != other.get_core_type()))
return false;
}
if (other.is_core_eff_valid()) {
if (!is_core_eff_valid() || (get_core_eff() != other.get_core_eff()))
return false;
}
return true;
}
return false;
}
bool operator==(const kmp_hw_attr_t &rhs) const {
return (rhs.valid == valid && rhs.core_eff == core_eff &&
rhs.core_type == core_type);
}
bool operator!=(const kmp_hw_attr_t &rhs) const { return !operator==(rhs); }
};
class kmp_hw_thread_t {
public:
static const int UNKNOWN_ID = -1;
static int compare_ids(const void *a, const void *b);
static int compare_compact(const void *a, const void *b);
int ids[KMP_HW_LAST];
int sub_ids[KMP_HW_LAST];
bool leader;
int os_id;
kmp_hw_attr_t attrs;
void print() const;
void clear() {
for (int i = 0; i < (int)KMP_HW_LAST; ++i)
ids[i] = UNKNOWN_ID;
leader = false;
attrs.clear();
}
};
class kmp_topology_t {
struct flags_t {
int uniform : 1;
int reserved : 31;
};
int depth;
// The following arrays are all 'depth' long and have been
// allocated to hold up to KMP_HW_LAST number of objects if
// needed so layers can be added without reallocation of any array
// Orderd array of the types in the topology
kmp_hw_t *types;
// Keep quick topology ratios, for non-uniform topologies,
// this ratio holds the max number of itemAs per itemB
// e.g., [ 4 packages | 6 cores / package | 2 threads / core ]
int *ratio;
// Storage containing the absolute number of each topology layer
int *count;
// The number of core efficiencies. This is only useful for hybrid
// topologies. Core efficiencies will range from 0 to num efficiencies - 1
int num_core_efficiencies;
int num_core_types;
kmp_hw_core_type_t core_types[KMP_HW_MAX_NUM_CORE_TYPES];
// The hardware threads array
// hw_threads is num_hw_threads long
// Each hw_thread's ids and sub_ids are depth deep
int num_hw_threads;
kmp_hw_thread_t *hw_threads;
// Equivalence hash where the key is the hardware topology item
// and the value is the equivalent hardware topology type in the
// types[] array, if the value is KMP_HW_UNKNOWN, then there is no
// known equivalence for the topology type
kmp_hw_t equivalent[KMP_HW_LAST];
// Flags describing the topology
flags_t flags;
// Insert a new topology layer after allocation
void _insert_layer(kmp_hw_t type, const int *ids);
#if KMP_GROUP_AFFINITY
// Insert topology information about Windows Processor groups
void _insert_windows_proc_groups();
#endif
// Count each item & get the num x's per y
// e.g., get the number of cores and the number of threads per core
// for each (x, y) in (KMP_HW_* , KMP_HW_*)
void _gather_enumeration_information();
// Remove layers that don't add information to the topology.
// This is done by having the layer take on the id = UNKNOWN_ID (-1)
void _remove_radix1_layers();
// Find out if the topology is uniform
void _discover_uniformity();
// Set all the sub_ids for each hardware thread
void _set_sub_ids();
// Set global affinity variables describing the number of threads per
// core, the number of packages, the number of cores per package, and
// the number of cores.
void _set_globals();
// Set the last level cache equivalent type
void _set_last_level_cache();
// Return the number of cores with a particular attribute, 'attr'.
// If 'find_all' is true, then find all cores on the machine, otherwise find
// all cores per the layer 'above'
int _get_ncores_with_attr(const kmp_hw_attr_t &attr, int above,
bool find_all = false) const;
public:
// Force use of allocate()/deallocate()
kmp_topology_t() = delete;
kmp_topology_t(const kmp_topology_t &t) = delete;
kmp_topology_t(kmp_topology_t &&t) = delete;
kmp_topology_t &operator=(const kmp_topology_t &t) = delete;
kmp_topology_t &operator=(kmp_topology_t &&t) = delete;
static kmp_topology_t *allocate(int nproc, int ndepth, const kmp_hw_t *types);
static void deallocate(kmp_topology_t *);
// Functions used in create_map() routines
kmp_hw_thread_t &at(int index) {
KMP_DEBUG_ASSERT(index >= 0 && index < num_hw_threads);
return hw_threads[index];
}
const kmp_hw_thread_t &at(int index) const {
KMP_DEBUG_ASSERT(index >= 0 && index < num_hw_threads);
return hw_threads[index];
}
int get_num_hw_threads() const { return num_hw_threads; }
void sort_ids() {
qsort(hw_threads, num_hw_threads, sizeof(kmp_hw_thread_t),
kmp_hw_thread_t::compare_ids);
}
// Check if the hardware ids are unique, if they are
// return true, otherwise return false
bool check_ids() const;
// Function to call after the create_map() routine
void canonicalize();
void canonicalize(int pkgs, int cores_per_pkg, int thr_per_core, int cores);
// Functions used after canonicalize() called
bool filter_hw_subset();
bool is_close(int hwt1, int hwt2, int level) const;
bool is_uniform() const { return flags.uniform; }
// Tell whether a type is a valid type in the topology
// returns KMP_HW_UNKNOWN when there is no equivalent type
kmp_hw_t get_equivalent_type(kmp_hw_t type) const { return equivalent[type]; }
// Set type1 = type2
void set_equivalent_type(kmp_hw_t type1, kmp_hw_t type2) {
KMP_DEBUG_ASSERT_VALID_HW_TYPE(type1);
KMP_DEBUG_ASSERT_VALID_HW_TYPE(type2);
kmp_hw_t real_type2 = equivalent[type2];
if (real_type2 == KMP_HW_UNKNOWN)
real_type2 = type2;
equivalent[type1] = real_type2;
// This loop is required since any of the types may have been set to
// be equivalent to type1. They all must be checked and reset to type2.
KMP_FOREACH_HW_TYPE(type) {
if (equivalent[type] == type1) {
equivalent[type] = real_type2;
}
}
}
// Calculate number of types corresponding to level1
// per types corresponding to level2 (e.g., number of threads per core)
int calculate_ratio(int level1, int level2) const {
KMP_DEBUG_ASSERT(level1 >= 0 && level1 < depth);
KMP_DEBUG_ASSERT(level2 >= 0 && level2 < depth);
int r = 1;
for (int level = level1; level > level2; --level)
r *= ratio[level];
return r;
}
int get_ratio(int level) const {
KMP_DEBUG_ASSERT(level >= 0 && level < depth);
return ratio[level];
}
int get_depth() const { return depth; };
kmp_hw_t get_type(int level) const {
KMP_DEBUG_ASSERT(level >= 0 && level < depth);
return types[level];
}
int get_level(kmp_hw_t type) const {
KMP_DEBUG_ASSERT_VALID_HW_TYPE(type);
int eq_type = equivalent[type];
if (eq_type == KMP_HW_UNKNOWN)
return -1;
for (int i = 0; i < depth; ++i)
if (types[i] == eq_type)
return i;
return -1;
}
int get_count(int level) const {
KMP_DEBUG_ASSERT(level >= 0 && level < depth);
return count[level];
}
// Return the total number of cores with attribute 'attr'
int get_ncores_with_attr(const kmp_hw_attr_t &attr) const {
return _get_ncores_with_attr(attr, -1, true);
}
// Return the number of cores with attribute
// 'attr' per topology level 'above'
int get_ncores_with_attr_per(const kmp_hw_attr_t &attr, int above) const {
return _get_ncores_with_attr(attr, above, false);
}
#if KMP_AFFINITY_SUPPORTED
void sort_compact() {
qsort(hw_threads, num_hw_threads, sizeof(kmp_hw_thread_t),
kmp_hw_thread_t::compare_compact);
}
#endif
void print(const char *env_var = "KMP_AFFINITY") const;
void dump() const;
};
extern kmp_topology_t *__kmp_topology;
class kmp_hw_subset_t {
const static size_t MAX_ATTRS = KMP_HW_MAX_NUM_CORE_EFFS;
public:
// Describe a machine topology item in KMP_HW_SUBSET
struct item_t {
kmp_hw_t type;
int num_attrs;
int num[MAX_ATTRS];
int offset[MAX_ATTRS];
kmp_hw_attr_t attr[MAX_ATTRS];
};
// Put parenthesis around max to avoid accidental use of Windows max macro.
const static int USE_ALL = (std::numeric_limits<int>::max)();
private:
int depth;
int capacity;
item_t *items;
kmp_uint64 set;
bool absolute;
// The set must be able to handle up to KMP_HW_LAST number of layers
KMP_BUILD_ASSERT(sizeof(set) * 8 >= KMP_HW_LAST);
// Sorting the KMP_HW_SUBSET items to follow topology order
// All unknown topology types will be at the beginning of the subset
static int hw_subset_compare(const void *i1, const void *i2) {
kmp_hw_t type1 = ((const item_t *)i1)->type;
kmp_hw_t type2 = ((const item_t *)i2)->type;
int level1 = __kmp_topology->get_level(type1);
int level2 = __kmp_topology->get_level(type2);
return level1 - level2;
}
public:
// Force use of allocate()/deallocate()
kmp_hw_subset_t() = delete;
kmp_hw_subset_t(const kmp_hw_subset_t &t) = delete;
kmp_hw_subset_t(kmp_hw_subset_t &&t) = delete;
kmp_hw_subset_t &operator=(const kmp_hw_subset_t &t) = delete;
kmp_hw_subset_t &operator=(kmp_hw_subset_t &&t) = delete;
static kmp_hw_subset_t *allocate() {
int initial_capacity = 5;
kmp_hw_subset_t *retval =
(kmp_hw_subset_t *)__kmp_allocate(sizeof(kmp_hw_subset_t));
retval->depth = 0;
retval->capacity = initial_capacity;
retval->set = 0ull;
retval->absolute = false;
retval->items = (item_t *)__kmp_allocate(sizeof(item_t) * initial_capacity);
return retval;
}
static void deallocate(kmp_hw_subset_t *subset) {
__kmp_free(subset->items);
__kmp_free(subset);
}
void set_absolute() { absolute = true; }
bool is_absolute() const { return absolute; }
void push_back(int num, kmp_hw_t type, int offset, kmp_hw_attr_t attr) {
for (int i = 0; i < depth; ++i) {
// Found an existing item for this layer type
// Add the num, offset, and attr to this item
if (items[i].type == type) {
int idx = items[i].num_attrs++;
if ((size_t)idx >= MAX_ATTRS)
return;
items[i].num[idx] = num;
items[i].offset[idx] = offset;
items[i].attr[idx] = attr;
return;
}
}
if (depth == capacity - 1) {
capacity *= 2;
item_t *new_items = (item_t *)__kmp_allocate(sizeof(item_t) * capacity);
for (int i = 0; i < depth; ++i)
new_items[i] = items[i];
__kmp_free(items);
items = new_items;
}
items[depth].num_attrs = 1;
items[depth].type = type;
items[depth].num[0] = num;
items[depth].offset[0] = offset;
items[depth].attr[0] = attr;
depth++;
set |= (1ull << type);
}
int get_depth() const { return depth; }
const item_t &at(int index) const {
KMP_DEBUG_ASSERT(index >= 0 && index < depth);
return items[index];
}
item_t &at(int index) {
KMP_DEBUG_ASSERT(index >= 0 && index < depth);
return items[index];
}
void remove(int index) {
KMP_DEBUG_ASSERT(index >= 0 && index < depth);
set &= ~(1ull << items[index].type);
for (int j = index + 1; j < depth; ++j) {
items[j - 1] = items[j];
}
depth--;
}
void sort() {
KMP_DEBUG_ASSERT(__kmp_topology);
qsort(items, depth, sizeof(item_t), hw_subset_compare);
}
bool specified(kmp_hw_t type) const { return ((set & (1ull << type)) > 0); }
void dump() const {
printf("**********************\n");
printf("*** kmp_hw_subset: ***\n");
printf("* depth: %d\n", depth);
printf("* items:\n");
for (int i = 0; i < depth; ++i) {
printf(" type: %s\n", __kmp_hw_get_keyword(items[i].type));
for (int j = 0; j < items[i].num_attrs; ++j) {
printf(" num: %d, offset: %d, attr: ", items[i].num[j],
items[i].offset[j]);
if (!items[i].attr[j]) {
printf(" (none)\n");
} else {
printf(
" core_type = %s, core_eff = %d\n",
__kmp_hw_get_core_type_string(items[i].attr[j].get_core_type()),
items[i].attr[j].get_core_eff());
}
}
}
printf("* set: 0x%llx\n", set);
printf("* absolute: %d\n", absolute);
printf("**********************\n");
}
};
extern kmp_hw_subset_t *__kmp_hw_subset;
/* A structure for holding machine-specific hierarchy info to be computed once
at init. This structure represents a mapping of threads to the actual machine
hierarchy, or to our best guess at what the hierarchy might be, for the
purpose of performing an efficient barrier. In the worst case, when there is
no machine hierarchy information, it produces a tree suitable for a barrier,
similar to the tree used in the hyper barrier. */
class hierarchy_info {
public:
/* Good default values for number of leaves and branching factor, given no
affinity information. Behaves a bit like hyper barrier. */
static const kmp_uint32 maxLeaves = 4;
static const kmp_uint32 minBranch = 4;
/** Number of levels in the hierarchy. Typical levels are threads/core,
cores/package or socket, packages/node, nodes/machine, etc. We don't want
to get specific with nomenclature. When the machine is oversubscribed we
add levels to duplicate the hierarchy, doubling the thread capacity of the
hierarchy each time we add a level. */
kmp_uint32 maxLevels;
/** This is specifically the depth of the machine configuration hierarchy, in
terms of the number of levels along the longest path from root to any
leaf. It corresponds to the number of entries in numPerLevel if we exclude
all but one trailing 1. */
kmp_uint32 depth;
kmp_uint32 base_num_threads;
enum init_status { initialized = 0, not_initialized = 1, initializing = 2 };
volatile kmp_int8 uninitialized; // 0=initialized, 1=not initialized,
// 2=initialization in progress
volatile kmp_int8 resizing; // 0=not resizing, 1=resizing
/** Level 0 corresponds to leaves. numPerLevel[i] is the number of children
the parent of a node at level i has. For example, if we have a machine
with 4 packages, 4 cores/package and 2 HT per core, then numPerLevel =
{2, 4, 4, 1, 1}. All empty levels are set to 1. */
kmp_uint32 *numPerLevel;
kmp_uint32 *skipPerLevel;
void deriveLevels() {
int hier_depth = __kmp_topology->get_depth();
for (int i = hier_depth - 1, level = 0; i >= 0; --i, ++level) {
numPerLevel[level] = __kmp_topology->get_ratio(i);
}
}
hierarchy_info()
: maxLevels(7), depth(1), uninitialized(not_initialized), resizing(0) {}
void fini() {
if (!uninitialized && numPerLevel) {
__kmp_free(numPerLevel);
numPerLevel = NULL;
uninitialized = not_initialized;
}
}
void init(int num_addrs) {
kmp_int8 bool_result = KMP_COMPARE_AND_STORE_ACQ8(
&uninitialized, not_initialized, initializing);
if (bool_result == 0) { // Wait for initialization
while (TCR_1(uninitialized) != initialized)
KMP_CPU_PAUSE();
return;
}
KMP_DEBUG_ASSERT(bool_result == 1);
/* Added explicit initialization of the data fields here to prevent usage of
dirty value observed when static library is re-initialized multiple times
(e.g. when non-OpenMP thread repeatedly launches/joins thread that uses
OpenMP). */
depth = 1;
resizing = 0;
maxLevels = 7;
numPerLevel =
(kmp_uint32 *)__kmp_allocate(maxLevels * 2 * sizeof(kmp_uint32));
skipPerLevel = &(numPerLevel[maxLevels]);
for (kmp_uint32 i = 0; i < maxLevels;
++i) { // init numPerLevel[*] to 1 item per level
numPerLevel[i] = 1;
skipPerLevel[i] = 1;
}
// Sort table by physical ID
if (__kmp_topology && __kmp_topology->get_depth() > 0) {
deriveLevels();
} else {
numPerLevel[0] = maxLeaves;
numPerLevel[1] = num_addrs / maxLeaves;
if (num_addrs % maxLeaves)
numPerLevel[1]++;
}
base_num_threads = num_addrs;
for (int i = maxLevels - 1; i >= 0;
--i) // count non-empty levels to get depth
if (numPerLevel[i] != 1 || depth > 1) // only count one top-level '1'
depth++;
kmp_uint32 branch = minBranch;
if (numPerLevel[0] == 1)
branch = num_addrs / maxLeaves;
if (branch < minBranch)
branch = minBranch;
for (kmp_uint32 d = 0; d < depth - 1; ++d) { // optimize hierarchy width
while (numPerLevel[d] > branch ||
(d == 0 && numPerLevel[d] > maxLeaves)) { // max 4 on level 0!
if (numPerLevel[d] & 1)
numPerLevel[d]++;
numPerLevel[d] = numPerLevel[d] >> 1;
if (numPerLevel[d + 1] == 1)
depth++;
numPerLevel[d + 1] = numPerLevel[d + 1] << 1;
}
if (numPerLevel[0] == 1) {
branch = branch >> 1;
if (branch < 4)
branch = minBranch;
}
}
for (kmp_uint32 i = 1; i < depth; ++i)
skipPerLevel[i] = numPerLevel[i - 1] * skipPerLevel[i - 1];
// Fill in hierarchy in the case of oversubscription
for (kmp_uint32 i = depth; i < maxLevels; ++i)
skipPerLevel[i] = 2 * skipPerLevel[i - 1];
uninitialized = initialized; // One writer
}
// Resize the hierarchy if nproc changes to something larger than before
void resize(kmp_uint32 nproc) {
kmp_int8 bool_result = KMP_COMPARE_AND_STORE_ACQ8(&resizing, 0, 1);
while (bool_result == 0) { // someone else is trying to resize
KMP_CPU_PAUSE();
if (nproc <= base_num_threads) // happy with other thread's resize
return;
else // try to resize
bool_result = KMP_COMPARE_AND_STORE_ACQ8(&resizing, 0, 1);
}
KMP_DEBUG_ASSERT(bool_result != 0);
if (nproc <= base_num_threads)
return; // happy with other thread's resize
// Calculate new maxLevels
kmp_uint32 old_sz = skipPerLevel[depth - 1];
kmp_uint32 incs = 0, old_maxLevels = maxLevels;
// First see if old maxLevels is enough to contain new size
for (kmp_uint32 i = depth; i < maxLevels && nproc > old_sz; ++i) {
skipPerLevel[i] = 2 * skipPerLevel[i - 1];
numPerLevel[i - 1] *= 2;
old_sz *= 2;
depth++;
}
if (nproc > old_sz) { // Not enough space, need to expand hierarchy
while (nproc > old_sz) {
old_sz *= 2;
incs++;
depth++;
}
maxLevels += incs;
// Resize arrays
kmp_uint32 *old_numPerLevel = numPerLevel;
kmp_uint32 *old_skipPerLevel = skipPerLevel;
numPerLevel = skipPerLevel = NULL;
numPerLevel =
(kmp_uint32 *)__kmp_allocate(maxLevels * 2 * sizeof(kmp_uint32));
skipPerLevel = &(numPerLevel[maxLevels]);
// Copy old elements from old arrays
for (kmp_uint32 i = 0; i < old_maxLevels; ++i) {
// init numPerLevel[*] to 1 item per level
numPerLevel[i] = old_numPerLevel[i];
skipPerLevel[i] = old_skipPerLevel[i];
}
// Init new elements in arrays to 1
for (kmp_uint32 i = old_maxLevels; i < maxLevels; ++i) {
// init numPerLevel[*] to 1 item per level
numPerLevel[i] = 1;
skipPerLevel[i] = 1;
}
// Free old arrays
__kmp_free(old_numPerLevel);
}
// Fill in oversubscription levels of hierarchy
for (kmp_uint32 i = old_maxLevels; i < maxLevels; ++i)
skipPerLevel[i] = 2 * skipPerLevel[i - 1];
base_num_threads = nproc;
resizing = 0; // One writer
}
};
#endif // KMP_AFFINITY_H
|