1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
|
/*
* kmp_affinity.cpp -- affinity management
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
#if KMP_USE_HIER_SCHED
#error #include "kmp_dispatch_hier.h"
#endif
#if KMP_USE_HWLOC
// Copied from hwloc
#define HWLOC_GROUP_KIND_INTEL_MODULE 102
#define HWLOC_GROUP_KIND_INTEL_TILE 103
#define HWLOC_GROUP_KIND_INTEL_DIE 104
#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
#endif
// The machine topology
kmp_topology_t *__kmp_topology = nullptr;
// KMP_HW_SUBSET environment variable
kmp_hw_subset_t *__kmp_hw_subset = nullptr;
// Store the real or imagined machine hierarchy here
static hierarchy_info machine_hierarchy;
void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
kmp_uint32 depth;
// The test below is true if affinity is available, but set to "none". Need to
// init on first use of hierarchical barrier.
if (TCR_1(machine_hierarchy.uninitialized))
machine_hierarchy.init(nproc);
// Adjust the hierarchy in case num threads exceeds original
if (nproc > machine_hierarchy.base_num_threads)
machine_hierarchy.resize(nproc);
depth = machine_hierarchy.depth;
KMP_DEBUG_ASSERT(depth > 0);
thr_bar->depth = depth;
__kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
&(thr_bar->base_leaf_kids));
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
}
static int nCoresPerPkg, nPackages;
static int __kmp_nThreadsPerCore;
#ifndef KMP_DFLT_NTH_CORES
static int __kmp_ncores;
#endif
const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
switch (type) {
case KMP_HW_SOCKET:
return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
case KMP_HW_DIE:
return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
case KMP_HW_MODULE:
return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
case KMP_HW_TILE:
return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
case KMP_HW_NUMA:
return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
case KMP_HW_L3:
return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
case KMP_HW_L2:
return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
case KMP_HW_L1:
return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
case KMP_HW_LLC:
return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
case KMP_HW_CORE:
return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
case KMP_HW_THREAD:
return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
case KMP_HW_PROC_GROUP:
return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
}
return KMP_I18N_STR(Unknown);
}
const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
switch (type) {
case KMP_HW_SOCKET:
return ((plural) ? "sockets" : "socket");
case KMP_HW_DIE:
return ((plural) ? "dice" : "die");
case KMP_HW_MODULE:
return ((plural) ? "modules" : "module");
case KMP_HW_TILE:
return ((plural) ? "tiles" : "tile");
case KMP_HW_NUMA:
return ((plural) ? "numa_domains" : "numa_domain");
case KMP_HW_L3:
return ((plural) ? "l3_caches" : "l3_cache");
case KMP_HW_L2:
return ((plural) ? "l2_caches" : "l2_cache");
case KMP_HW_L1:
return ((plural) ? "l1_caches" : "l1_cache");
case KMP_HW_LLC:
return ((plural) ? "ll_caches" : "ll_cache");
case KMP_HW_CORE:
return ((plural) ? "cores" : "core");
case KMP_HW_THREAD:
return ((plural) ? "threads" : "thread");
case KMP_HW_PROC_GROUP:
return ((plural) ? "proc_groups" : "proc_group");
}
return ((plural) ? "unknowns" : "unknown");
}
////////////////////////////////////////////////////////////////////////////////
// kmp_hw_thread_t methods
int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
int depth = __kmp_topology->get_depth();
for (int level = 0; level < depth; ++level) {
if (ahwthread->ids[level] < bhwthread->ids[level])
return -1;
else if (ahwthread->ids[level] > bhwthread->ids[level])
return 1;
}
if (ahwthread->os_id < bhwthread->os_id)
return -1;
else if (ahwthread->os_id > bhwthread->os_id)
return 1;
return 0;
}
#if KMP_AFFINITY_SUPPORTED
int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
int i;
const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
int depth = __kmp_topology->get_depth();
KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
for (i = 0; i < __kmp_affinity_compact; i++) {
int j = depth - i - 1;
if (aa->sub_ids[j] < bb->sub_ids[j])
return -1;
if (aa->sub_ids[j] > bb->sub_ids[j])
return 1;
}
for (; i < depth; i++) {
int j = i - __kmp_affinity_compact;
if (aa->sub_ids[j] < bb->sub_ids[j])
return -1;
if (aa->sub_ids[j] > bb->sub_ids[j])
return 1;
}
return 0;
}
#endif
void kmp_hw_thread_t::print() const {
int depth = __kmp_topology->get_depth();
printf("%4d ", os_id);
for (int i = 0; i < depth; ++i) {
printf("%4d ", ids[i]);
}
printf("\n");
}
////////////////////////////////////////////////////////////////////////////////
// kmp_topology_t methods
// Remove layers that don't add information to the topology.
// This is done by having the layer take on the id = UNKNOWN_ID (-1)
void kmp_topology_t::_remove_radix1_layers() {
int preference[KMP_HW_LAST];
int top_index1, top_index2;
// Set up preference associative array
preference[KMP_HW_PROC_GROUP] = 110;
preference[KMP_HW_SOCKET] = 100;
preference[KMP_HW_CORE] = 95;
preference[KMP_HW_THREAD] = 90;
preference[KMP_HW_NUMA] = 85;
preference[KMP_HW_DIE] = 80;
preference[KMP_HW_TILE] = 75;
preference[KMP_HW_MODULE] = 73;
preference[KMP_HW_L3] = 70;
preference[KMP_HW_L2] = 65;
preference[KMP_HW_L1] = 60;
preference[KMP_HW_LLC] = 5;
top_index1 = 0;
top_index2 = 1;
while (top_index1 < depth - 1 && top_index2 < depth) {
kmp_hw_t type1 = types[top_index1];
kmp_hw_t type2 = types[top_index2];
KMP_ASSERT_VALID_HW_TYPE(type1);
KMP_ASSERT_VALID_HW_TYPE(type2);
// Do not allow the three main topology levels (sockets, cores, threads) to
// be compacted down
if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
type1 == KMP_HW_SOCKET) &&
(type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
type2 == KMP_HW_SOCKET)) {
top_index1 = top_index2++;
continue;
}
bool radix1 = true;
bool all_same = true;
int id1 = hw_threads[0].ids[top_index1];
int id2 = hw_threads[0].ids[top_index2];
int pref1 = preference[type1];
int pref2 = preference[type2];
for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
if (hw_threads[hwidx].ids[top_index1] == id1 &&
hw_threads[hwidx].ids[top_index2] != id2) {
radix1 = false;
break;
}
if (hw_threads[hwidx].ids[top_index2] != id2)
all_same = false;
id1 = hw_threads[hwidx].ids[top_index1];
id2 = hw_threads[hwidx].ids[top_index2];
}
if (radix1) {
// Select the layer to remove based on preference
kmp_hw_t remove_type, keep_type;
int remove_layer, remove_layer_ids;
if (pref1 > pref2) {
remove_type = type2;
remove_layer = remove_layer_ids = top_index2;
keep_type = type1;
} else {
remove_type = type1;
remove_layer = remove_layer_ids = top_index1;
keep_type = type2;
}
// If all the indexes for the second (deeper) layer are the same.
// e.g., all are zero, then make sure to keep the first layer's ids
if (all_same)
remove_layer_ids = top_index2;
// Remove radix one type by setting the equivalence, removing the id from
// the hw threads and removing the layer from types and depth
set_equivalent_type(remove_type, keep_type);
for (int idx = 0; idx < num_hw_threads; ++idx) {
kmp_hw_thread_t &hw_thread = hw_threads[idx];
for (int d = remove_layer_ids; d < depth - 1; ++d)
hw_thread.ids[d] = hw_thread.ids[d + 1];
}
for (int idx = remove_layer; idx < depth - 1; ++idx)
types[idx] = types[idx + 1];
depth--;
} else {
top_index1 = top_index2++;
}
}
KMP_ASSERT(depth > 0);
}
void kmp_topology_t::_set_last_level_cache() {
if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
#if KMP_MIC_SUPPORTED
else if (__kmp_mic_type == mic3) {
if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
// L2/Tile wasn't detected so just say L1
else
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
}
#endif
else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
// Fallback is to set last level cache to socket or core
if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
}
KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
}
// Gather the count of each topology layer and the ratio
void kmp_topology_t::_gather_enumeration_information() {
int previous_id[KMP_HW_LAST];
int max[KMP_HW_LAST];
for (int i = 0; i < depth; ++i) {
previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
max[i] = 0;
count[i] = 0;
ratio[i] = 0;
}
for (int i = 0; i < num_hw_threads; ++i) {
kmp_hw_thread_t &hw_thread = hw_threads[i];
for (int layer = 0; layer < depth; ++layer) {
int id = hw_thread.ids[layer];
if (id != previous_id[layer]) {
// Add an additional increment to each count
for (int l = layer; l < depth; ++l)
count[l]++;
// Keep track of topology layer ratio statistics
max[layer]++;
for (int l = layer + 1; l < depth; ++l) {
if (max[l] > ratio[l])
ratio[l] = max[l];
max[l] = 1;
}
break;
}
}
for (int layer = 0; layer < depth; ++layer) {
previous_id[layer] = hw_thread.ids[layer];
}
}
for (int layer = 0; layer < depth; ++layer) {
if (max[layer] > ratio[layer])
ratio[layer] = max[layer];
}
}
// Find out if the topology is uniform
void kmp_topology_t::_discover_uniformity() {
int num = 1;
for (int level = 0; level < depth; ++level)
num *= ratio[level];
flags.uniform = (num == count[depth - 1]);
}
// Set all the sub_ids for each hardware thread
void kmp_topology_t::_set_sub_ids() {
int previous_id[KMP_HW_LAST];
int sub_id[KMP_HW_LAST];
for (int i = 0; i < depth; ++i) {
previous_id[i] = -1;
sub_id[i] = -1;
}
for (int i = 0; i < num_hw_threads; ++i) {
kmp_hw_thread_t &hw_thread = hw_threads[i];
// Setup the sub_id
for (int j = 0; j < depth; ++j) {
if (hw_thread.ids[j] != previous_id[j]) {
sub_id[j]++;
for (int k = j + 1; k < depth; ++k) {
sub_id[k] = 0;
}
break;
}
}
// Set previous_id
for (int j = 0; j < depth; ++j) {
previous_id[j] = hw_thread.ids[j];
}
// Set the sub_ids field
for (int j = 0; j < depth; ++j) {
hw_thread.sub_ids[j] = sub_id[j];
}
}
}
void kmp_topology_t::_set_globals() {
// Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
int core_level, thread_level, package_level;
package_level = get_level(KMP_HW_SOCKET);
#if KMP_GROUP_AFFINITY
if (package_level == -1)
package_level = get_level(KMP_HW_PROC_GROUP);
#endif
core_level = get_level(KMP_HW_CORE);
thread_level = get_level(KMP_HW_THREAD);
KMP_ASSERT(core_level != -1);
KMP_ASSERT(thread_level != -1);
__kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
if (package_level != -1) {
nCoresPerPkg = calculate_ratio(core_level, package_level);
nPackages = get_count(package_level);
} else {
// assume one socket
nCoresPerPkg = get_count(core_level);
nPackages = 1;
}
#ifndef KMP_DFLT_NTH_CORES
__kmp_ncores = get_count(core_level);
#endif
}
kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
const kmp_hw_t *types) {
kmp_topology_t *retval;
// Allocate all data in one large allocation
size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
sizeof(int) * ndepth * 3;
char *bytes = (char *)__kmp_allocate(size);
retval = (kmp_topology_t *)bytes;
if (nproc > 0) {
retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
} else {
retval->hw_threads = nullptr;
}
retval->num_hw_threads = nproc;
retval->depth = ndepth;
int *arr =
(int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
retval->types = (kmp_hw_t *)arr;
retval->ratio = arr + ndepth;
retval->count = arr + 2 * ndepth;
KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
for (int i = 0; i < ndepth; ++i) {
retval->types[i] = types[i];
retval->equivalent[types[i]] = types[i];
}
return retval;
}
void kmp_topology_t::deallocate(kmp_topology_t *topology) {
if (topology)
__kmp_free(topology);
}
bool kmp_topology_t::check_ids() const {
// Assume ids have been sorted
if (num_hw_threads == 0)
return true;
for (int i = 1; i < num_hw_threads; ++i) {
kmp_hw_thread_t ¤t_thread = hw_threads[i];
kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
bool unique = false;
for (int j = 0; j < depth; ++j) {
if (previous_thread.ids[j] != current_thread.ids[j]) {
unique = true;
break;
}
}
if (unique)
continue;
return false;
}
return true;
}
void kmp_topology_t::dump() const {
printf("***********************\n");
printf("*** __kmp_topology: ***\n");
printf("***********************\n");
printf("* depth: %d\n", depth);
printf("* types: ");
for (int i = 0; i < depth; ++i)
printf("%15s ", __kmp_hw_get_keyword(types[i]));
printf("\n");
printf("* ratio: ");
for (int i = 0; i < depth; ++i) {
printf("%15d ", ratio[i]);
}
printf("\n");
printf("* count: ");
for (int i = 0; i < depth; ++i) {
printf("%15d ", count[i]);
}
printf("\n");
printf("* equivalent map:\n");
KMP_FOREACH_HW_TYPE(i) {
const char *key = __kmp_hw_get_keyword(i);
const char *value = __kmp_hw_get_keyword(equivalent[i]);
printf("%-15s -> %-15s\n", key, value);
}
printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
printf("* num_hw_threads: %d\n", num_hw_threads);
printf("* hw_threads:\n");
for (int i = 0; i < num_hw_threads; ++i) {
hw_threads[i].print();
}
printf("***********************\n");
}
void kmp_topology_t::print(const char *env_var) const {
kmp_str_buf_t buf;
int print_types_depth;
__kmp_str_buf_init(&buf);
kmp_hw_t print_types[KMP_HW_LAST + 2];
// Num Available Threads
KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
// Uniform or not
if (is_uniform()) {
KMP_INFORM(Uniform, env_var);
} else {
KMP_INFORM(NonUniform, env_var);
}
// Equivalent types
KMP_FOREACH_HW_TYPE(type) {
kmp_hw_t eq_type = equivalent[type];
if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
KMP_INFORM(AffEqualTopologyTypes, env_var,
__kmp_hw_get_catalog_string(type),
__kmp_hw_get_catalog_string(eq_type));
}
}
// Quick topology
KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
// Create a print types array that always guarantees printing
// the core and thread level
print_types_depth = 0;
for (int level = 0; level < depth; ++level)
print_types[print_types_depth++] = types[level];
if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
// Force in the core level for quick topology
if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
// Force core before thread e.g., 1 socket X 2 threads/socket
// becomes 1 socket X 1 core/socket X 2 threads/socket
print_types[print_types_depth - 1] = KMP_HW_CORE;
print_types[print_types_depth++] = KMP_HW_THREAD;
} else {
print_types[print_types_depth++] = KMP_HW_CORE;
}
}
// Always put threads at very end of quick topology
if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
print_types[print_types_depth++] = KMP_HW_THREAD;
__kmp_str_buf_clear(&buf);
kmp_hw_t numerator_type;
kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
int core_level = get_level(KMP_HW_CORE);
int ncores = get_count(core_level);
for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
int c;
bool plural;
numerator_type = print_types[plevel];
KMP_ASSERT_VALID_HW_TYPE(numerator_type);
if (equivalent[numerator_type] != numerator_type)
c = 1;
else
c = get_ratio(level++);
plural = (c > 1);
if (plevel == 0) {
__kmp_str_buf_print(&buf, "%d %s", c,
__kmp_hw_get_catalog_string(numerator_type, plural));
} else {
__kmp_str_buf_print(&buf, " x %d %s/%s", c,
__kmp_hw_get_catalog_string(numerator_type, plural),
__kmp_hw_get_catalog_string(denominator_type));
}
denominator_type = numerator_type;
}
KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
if (num_hw_threads <= 0) {
__kmp_str_buf_free(&buf);
return;
}
// Full OS proc to hardware thread map
KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
for (int i = 0; i < num_hw_threads; i++) {
__kmp_str_buf_clear(&buf);
for (int level = 0; level < depth; ++level) {
kmp_hw_t type = types[level];
__kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
__kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
}
KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
}
__kmp_str_buf_free(&buf);
}
void kmp_topology_t::canonicalize() {
_remove_radix1_layers();
_gather_enumeration_information();
_discover_uniformity();
_set_sub_ids();
_set_globals();
_set_last_level_cache();
#if KMP_MIC_SUPPORTED
// Manually Add L2 = Tile equivalence
if (__kmp_mic_type == mic3) {
if (get_level(KMP_HW_L2) != -1)
set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
else if (get_level(KMP_HW_TILE) != -1)
set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
}
#endif
// Perform post canonicalization checking
KMP_ASSERT(depth > 0);
for (int level = 0; level < depth; ++level) {
// All counts, ratios, and types must be valid
KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
KMP_ASSERT_VALID_HW_TYPE(types[level]);
// Detected types must point to themselves
KMP_ASSERT(equivalent[types[level]] == types[level]);
}
#if KMP_AFFINITY_SUPPORTED
// Set the number of affinity granularity levels
if (__kmp_affinity_gran_levels < 0) {
kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
// Check if user's granularity request is valid
if (gran_type == KMP_HW_UNKNOWN) {
// First try core, then thread, then package
kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
for (auto g : gran_types) {
if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
gran_type = g;
break;
}
}
KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
// Warn user what granularity setting will be used instead
KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
__kmp_hw_get_catalog_string(__kmp_affinity_gran),
__kmp_hw_get_catalog_string(gran_type));
__kmp_affinity_gran = gran_type;
}
__kmp_affinity_gran_levels = 0;
for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
__kmp_affinity_gran_levels++;
}
#endif // KMP_AFFINITY_SUPPORTED
}
// Canonicalize an explicit packages X cores/pkg X threads/core topology
void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
int nthreads_per_core, int ncores) {
int ndepth = 3;
depth = ndepth;
KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
for (int level = 0; level < depth; ++level) {
count[level] = 0;
ratio[level] = 0;
}
count[0] = npackages;
count[1] = ncores;
count[2] = __kmp_xproc;
ratio[0] = npackages;
ratio[1] = ncores_per_pkg;
ratio[2] = nthreads_per_core;
equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
equivalent[KMP_HW_CORE] = KMP_HW_CORE;
equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
types[0] = KMP_HW_SOCKET;
types[1] = KMP_HW_CORE;
types[2] = KMP_HW_THREAD;
//__kmp_avail_proc = __kmp_xproc;
_discover_uniformity();
}
// Apply the KMP_HW_SUBSET envirable to the topology
// Returns true if KMP_HW_SUBSET filtered any processors
// otherwise, returns false
bool kmp_topology_t::filter_hw_subset() {
// If KMP_HW_SUBSET wasn't requested, then do nothing.
if (!__kmp_hw_subset)
return false;
// Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
int hw_subset_depth = __kmp_hw_subset->get_depth();
kmp_hw_t specified[KMP_HW_LAST];
KMP_ASSERT(hw_subset_depth > 0);
KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
for (int i = 0; i < hw_subset_depth; ++i) {
int max_count;
int num = __kmp_hw_subset->at(i).num;
int offset = __kmp_hw_subset->at(i).offset;
kmp_hw_t type = __kmp_hw_subset->at(i).type;
kmp_hw_t equivalent_type = equivalent[type];
int level = get_level(type);
// Check to see if current layer is in detected machine topology
if (equivalent_type != KMP_HW_UNKNOWN) {
__kmp_hw_subset->at(i).type = equivalent_type;
} else {
KMP_WARNING(AffHWSubsetNotExistGeneric,
__kmp_hw_get_catalog_string(type));
return false;
}
// Check to see if current layer has already been specified
// either directly or through an equivalent type
if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
__kmp_hw_get_catalog_string(specified[equivalent_type]));
return false;
}
specified[equivalent_type] = type;
// Check to see if layers are in order
if (i + 1 < hw_subset_depth) {
kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type);
if (next_type == KMP_HW_UNKNOWN) {
KMP_WARNING(
AffHWSubsetNotExistGeneric,
__kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type));
return false;
}
int next_topology_level = get_level(next_type);
if (level > next_topology_level) {
KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type),
__kmp_hw_get_catalog_string(next_type));
return false;
}
}
// Check to see if each layer's num & offset parameters are valid
max_count = get_ratio(level);
if (max_count < 0 || num + offset > max_count) {
bool plural = (num > 1);
KMP_WARNING(AffHWSubsetManyGeneric,
__kmp_hw_get_catalog_string(type, plural));
return false;
}
}
// Apply the filtered hardware subset
int new_index = 0;
for (int i = 0; i < num_hw_threads; ++i) {
kmp_hw_thread_t &hw_thread = hw_threads[i];
// Check to see if this hardware thread should be filtered
bool should_be_filtered = false;
for (int level = 0, hw_subset_index = 0;
level < depth && hw_subset_index < hw_subset_depth; ++level) {
kmp_hw_t topology_type = types[level];
auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
kmp_hw_t hw_subset_type = hw_subset_item.type;
if (topology_type != hw_subset_type)
continue;
int num = hw_subset_item.num;
int offset = hw_subset_item.offset;
hw_subset_index++;
if (hw_thread.sub_ids[level] < offset ||
hw_thread.sub_ids[level] >= offset + num) {
should_be_filtered = true;
break;
}
}
if (!should_be_filtered) {
if (i != new_index)
hw_threads[new_index] = hw_thread;
new_index++;
} else {
#if KMP_AFFINITY_SUPPORTED
KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask);
#endif
__kmp_avail_proc--;
}
}
KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
num_hw_threads = new_index;
// Post hardware subset canonicalization
_gather_enumeration_information();
_discover_uniformity();
_set_globals();
_set_last_level_cache();
return true;
}
bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
if (hw_level >= depth)
return true;
bool retval = true;
const kmp_hw_thread_t &t1 = hw_threads[hwt1];
const kmp_hw_thread_t &t2 = hw_threads[hwt2];
for (int i = 0; i < (depth - hw_level); ++i) {
if (t1.ids[i] != t2.ids[i])
return false;
}
return retval;
}
////////////////////////////////////////////////////////////////////////////////
#if KMP_AFFINITY_SUPPORTED
class kmp_affinity_raii_t {
kmp_affin_mask_t *mask;
bool restored;
public:
kmp_affinity_raii_t() : restored(false) {
KMP_CPU_ALLOC(mask);
KMP_ASSERT(mask != NULL);
__kmp_get_system_affinity(mask, TRUE);
}
void restore() {
__kmp_set_system_affinity(mask, TRUE);
KMP_CPU_FREE(mask);
restored = true;
}
~kmp_affinity_raii_t() {
if (!restored) {
__kmp_set_system_affinity(mask, TRUE);
KMP_CPU_FREE(mask);
}
}
};
bool KMPAffinity::picked_api = false;
void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
void KMPAffinity::pick_api() {
KMPAffinity *affinity_dispatch;
if (picked_api)
return;
#if KMP_USE_HWLOC
// Only use Hwloc if affinity isn't explicitly disabled and
// user requests Hwloc topology method
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
__kmp_affinity_type != affinity_disabled) {
affinity_dispatch = new KMPHwlocAffinity();
} else
#endif
{
affinity_dispatch = new KMPNativeAffinity();
}
__kmp_affinity_dispatch = affinity_dispatch;
picked_api = true;
}
void KMPAffinity::destroy_api() {
if (__kmp_affinity_dispatch != NULL) {
delete __kmp_affinity_dispatch;
__kmp_affinity_dispatch = NULL;
picked_api = false;
}
}
#define KMP_ADVANCE_SCAN(scan) \
while (*scan != '\0') { \
scan++; \
}
// Print the affinity mask to the character array in a pretty format.
// The format is a comma separated list of non-negative integers or integer
// ranges: e.g., 1,2,3-5,7,9-15
// The format can also be the string "{<empty>}" if no bits are set in mask
char *__kmp_affinity_print_mask(char *buf, int buf_len,
kmp_affin_mask_t *mask) {
int start = 0, finish = 0, previous = 0;
bool first_range;
KMP_ASSERT(buf);
KMP_ASSERT(buf_len >= 40);
KMP_ASSERT(mask);
char *scan = buf;
char *end = buf + buf_len - 1;
// Check for empty set.
if (mask->begin() == mask->end()) {
KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
KMP_ADVANCE_SCAN(scan);
KMP_ASSERT(scan <= end);
return buf;
}
first_range = true;
start = mask->begin();
while (1) {
// Find next range
// [start, previous] is inclusive range of contiguous bits in mask
for (finish = mask->next(start), previous = start;
finish == previous + 1 && finish != mask->end();
finish = mask->next(finish)) {
previous = finish;
}
// The first range does not need a comma printed before it, but the rest
// of the ranges do need a comma beforehand
if (!first_range) {
KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
KMP_ADVANCE_SCAN(scan);
} else {
first_range = false;
}
// Range with three or more contiguous bits in the affinity mask
if (previous - start > 1) {
KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
} else {
// Range with one or two contiguous bits in the affinity mask
KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
KMP_ADVANCE_SCAN(scan);
if (previous - start > 0) {
KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
}
}
KMP_ADVANCE_SCAN(scan);
// Start over with new start point
start = finish;
if (start == mask->end())
break;
// Check for overflow
if (end - scan < 2)
break;
}
// Check for overflow
KMP_ASSERT(scan <= end);
return buf;
}
#undef KMP_ADVANCE_SCAN
// Print the affinity mask to the string buffer object in a pretty format
// The format is a comma separated list of non-negative integers or integer
// ranges: e.g., 1,2,3-5,7,9-15
// The format can also be the string "{<empty>}" if no bits are set in mask
kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
kmp_affin_mask_t *mask) {
int start = 0, finish = 0, previous = 0;
bool first_range;
KMP_ASSERT(buf);
KMP_ASSERT(mask);
__kmp_str_buf_clear(buf);
// Check for empty set.
if (mask->begin() == mask->end()) {
__kmp_str_buf_print(buf, "%s", "{<empty>}");
return buf;
}
first_range = true;
start = mask->begin();
while (1) {
// Find next range
// [start, previous] is inclusive range of contiguous bits in mask
for (finish = mask->next(start), previous = start;
finish == previous + 1 && finish != mask->end();
finish = mask->next(finish)) {
previous = finish;
}
// The first range does not need a comma printed before it, but the rest
// of the ranges do need a comma beforehand
if (!first_range) {
__kmp_str_buf_print(buf, "%s", ",");
} else {
first_range = false;
}
// Range with three or more contiguous bits in the affinity mask
if (previous - start > 1) {
__kmp_str_buf_print(buf, "%u-%u", start, previous);
} else {
// Range with one or two contiguous bits in the affinity mask
__kmp_str_buf_print(buf, "%u", start);
if (previous - start > 0) {
__kmp_str_buf_print(buf, ",%u", previous);
}
}
// Start over with new start point
start = finish;
if (start == mask->end())
break;
}
return buf;
}
void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
KMP_CPU_ZERO(mask);
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
int group;
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
for (group = 0; group < __kmp_num_proc_groups; group++) {
int i;
int num = __kmp_GetActiveProcessorCount(group);
for (i = 0; i < num; i++) {
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
}
}
} else
#endif /* KMP_GROUP_AFFINITY */
{
int proc;
for (proc = 0; proc < __kmp_xproc; proc++) {
KMP_CPU_SET(proc, mask);
}
}
}
// All of the __kmp_affinity_create_*_map() routines should allocate the
// internal topology object and set the layer ids for it. Each routine
// returns a boolean on whether it was successful at doing so.
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
#if KMP_USE_HWLOC
static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
#if HWLOC_API_VERSION >= 0x00020000
return hwloc_obj_type_is_cache(obj->type);
#else
return obj->type == HWLOC_OBJ_CACHE;
#endif
}
// Returns KMP_HW_* type derived from HWLOC_* type
static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
if (__kmp_hwloc_is_cache_type(obj)) {
if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
return KMP_HW_UNKNOWN;
switch (obj->attr->cache.depth) {
case 1:
return KMP_HW_L1;
case 2:
#if KMP_MIC_SUPPORTED
if (__kmp_mic_type == mic3) {
return KMP_HW_TILE;
}
#endif
return KMP_HW_L2;
case 3:
return KMP_HW_L3;
}
return KMP_HW_UNKNOWN;
}
switch (obj->type) {
case HWLOC_OBJ_PACKAGE:
return KMP_HW_SOCKET;
case HWLOC_OBJ_NUMANODE:
return KMP_HW_NUMA;
case HWLOC_OBJ_CORE:
return KMP_HW_CORE;
case HWLOC_OBJ_PU:
return KMP_HW_THREAD;
case HWLOC_OBJ_GROUP:
if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
return KMP_HW_DIE;
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
return KMP_HW_TILE;
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
return KMP_HW_MODULE;
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
return KMP_HW_PROC_GROUP;
return KMP_HW_UNKNOWN;
#if HWLOC_API_VERSION >= 0x00020100
case HWLOC_OBJ_DIE:
return KMP_HW_DIE;
#endif
}
return KMP_HW_UNKNOWN;
}
// Returns the number of objects of type 'type' below 'obj' within the topology
// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
// object.
static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
hwloc_obj_type_t type) {
int retval = 0;
hwloc_obj_t first;
for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
obj->logical_index, type, 0);
first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
obj->type, first) == obj;
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
first)) {
++retval;
}
return retval;
}
// This gets the sub_id for a lower object under a higher object in the
// topology tree
static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
hwloc_obj_t lower) {
hwloc_obj_t obj;
hwloc_obj_type_t ltype = lower->type;
int lindex = lower->logical_index - 1;
int sub_id = 0;
// Get the previous lower object
obj = hwloc_get_obj_by_type(t, ltype, lindex);
while (obj && lindex >= 0 &&
hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
if (obj->userdata) {
sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
break;
}
sub_id++;
lindex--;
obj = hwloc_get_obj_by_type(t, ltype, lindex);
}
// store sub_id + 1 so that 0 is differed from NULL
lower->userdata = RCAST(void *, sub_id + 1);
return sub_id;
}
static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
kmp_hw_t type;
int hw_thread_index, sub_id;
int depth;
hwloc_obj_t pu, obj, root, prev;
kmp_hw_t types[KMP_HW_LAST];
hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
hwloc_topology_t tp = __kmp_hwloc_topology;
*msg_id = kmp_i18n_null;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
}
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from hwloc on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
// hwloc only guarantees existance of PU object, so check PACKAGE and CORE
hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
if (o != NULL)
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
else
nCoresPerPkg = 1; // no PACKAGE found
o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
if (o != NULL)
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
else
__kmp_nThreadsPerCore = 1; // no CORE found
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
if (nCoresPerPkg == 0)
nCoresPerPkg = 1; // to prevent possible division by 0
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
return true;
}
root = hwloc_get_root_obj(tp);
// Figure out the depth and types in the topology
depth = 0;
pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
KMP_ASSERT(pu);
obj = pu;
types[depth] = KMP_HW_THREAD;
hwloc_types[depth] = obj->type;
depth++;
while (obj != root && obj != NULL) {
obj = obj->parent;
#if HWLOC_API_VERSION >= 0x00020000
if (obj->memory_arity) {
hwloc_obj_t memory;
for (memory = obj->memory_first_child; memory;
memory = hwloc_get_next_child(tp, obj, memory)) {
if (memory->type == HWLOC_OBJ_NUMANODE)
break;
}
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
types[depth] = KMP_HW_NUMA;
hwloc_types[depth] = memory->type;
depth++;
}
}
#endif
type = __kmp_hwloc_type_2_topology_type(obj);
if (type != KMP_HW_UNKNOWN) {
types[depth] = type;
hwloc_types[depth] = obj->type;
depth++;
}
}
KMP_ASSERT(depth > 0);
// Get the order for the types correct
for (int i = 0, j = depth - 1; i < j; ++i, --j) {
hwloc_obj_type_t hwloc_temp = hwloc_types[i];
kmp_hw_t temp = types[i];
types[i] = types[j];
types[j] = temp;
hwloc_types[i] = hwloc_types[j];
hwloc_types[j] = hwloc_temp;
}
// Allocate the data structure to be returned.
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
hw_thread_index = 0;
pu = NULL;
while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
int index = depth - 1;
bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
if (included) {
hw_thread.clear();
hw_thread.ids[index] = pu->logical_index;
hw_thread.os_id = pu->os_index;
index--;
}
obj = pu;
prev = obj;
while (obj != root && obj != NULL) {
obj = obj->parent;
#if HWLOC_API_VERSION >= 0x00020000
// NUMA Nodes are handled differently since they are not within the
// parent/child structure anymore. They are separate children
// of obj (memory_first_child points to first memory child)
if (obj->memory_arity) {
hwloc_obj_t memory;
for (memory = obj->memory_first_child; memory;
memory = hwloc_get_next_child(tp, obj, memory)) {
if (memory->type == HWLOC_OBJ_NUMANODE)
break;
}
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
if (included) {
hw_thread.ids[index] = memory->logical_index;
hw_thread.ids[index + 1] = sub_id;
index--;
}
prev = memory;
}
prev = obj;
}
#endif
type = __kmp_hwloc_type_2_topology_type(obj);
if (type != KMP_HW_UNKNOWN) {
sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
if (included) {
hw_thread.ids[index] = obj->logical_index;
hw_thread.ids[index + 1] = sub_id;
index--;
}
prev = obj;
}
}
if (included)
hw_thread_index++;
}
__kmp_topology->sort_ids();
return true;
}
#endif // KMP_USE_HWLOC
// If we don't know how to retrieve the machine's processor topology, or
// encounter an error in doing so, this routine is called to form a "flat"
// mapping of os thread id's <-> processor id's.
static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
*msg_id = kmp_i18n_null;
int depth = 3;
kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
if (__kmp_affinity_verbose) {
KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
}
// Even if __kmp_affinity_type == affinity_none, this routine might still
// called to set __kmp_ncores, as well as
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_ncores = nPackages = __kmp_xproc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
return true;
}
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return now if affinity is
// not enabled.
__kmp_ncores = nPackages = __kmp_avail_proc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
// Construct the data structure to be returned.
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
hw_thread.clear();
hw_thread.os_id = i;
hw_thread.ids[0] = i;
hw_thread.ids[1] = 0;
hw_thread.ids[2] = 0;
avail_ct++;
}
if (__kmp_affinity_verbose) {
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
}
return true;
}
#if KMP_GROUP_AFFINITY
// If multiple Windows* OS processor groups exist, we can create a 2-level
// topology map with the groups at level 0 and the individual procs at level 1.
// This facilitates letting the threads float among all procs in a group,
// if granularity=group (the default when there are multiple groups).
static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
*msg_id = kmp_i18n_null;
int depth = 3;
kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
if (__kmp_affinity_verbose) {
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
}
// If we aren't affinity capable, then use flat topology
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(__kmp_affinity_type == affinity_none);
nPackages = __kmp_num_proc_groups;
__kmp_nThreadsPerCore = 1;
__kmp_ncores = __kmp_xproc;
nCoresPerPkg = nPackages / __kmp_ncores;
return true;
}
// Construct the data structure to be returned.
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
hw_thread.clear();
hw_thread.os_id = i;
hw_thread.ids[0] = i / BITS_PER_GROUP;
hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
}
return true;
}
#endif /* KMP_GROUP_AFFINITY */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
template <kmp_uint32 LSB, kmp_uint32 MSB>
static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
const kmp_uint32 SHIFT_RIGHT = LSB;
kmp_uint32 retval = v;
retval <<= SHIFT_LEFT;
retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
return retval;
}
static int __kmp_cpuid_mask_width(int count) {
int r = 0;
while ((1 << r) < count)
++r;
return r;
}
class apicThreadInfo {
public:
unsigned osId; // param to __kmp_affinity_bind_thread
unsigned apicId; // from cpuid after binding
unsigned maxCoresPerPkg; // ""
unsigned maxThreadsPerPkg; // ""
unsigned pkgId; // inferred from above values
unsigned coreId; // ""
unsigned threadId; // ""
};
static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
const void *b) {
const apicThreadInfo *aa = (const apicThreadInfo *)a;
const apicThreadInfo *bb = (const apicThreadInfo *)b;
if (aa->pkgId < bb->pkgId)
return -1;
if (aa->pkgId > bb->pkgId)
return 1;
if (aa->coreId < bb->coreId)
return -1;
if (aa->coreId > bb->coreId)
return 1;
if (aa->threadId < bb->threadId)
return -1;
if (aa->threadId > bb->threadId)
return 1;
return 0;
}
class kmp_cache_info_t {
public:
struct info_t {
unsigned level, mask;
};
kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
size_t get_depth() const { return depth; }
info_t &operator[](size_t index) { return table[index]; }
const info_t &operator[](size_t index) const { return table[index]; }
static kmp_hw_t get_topology_type(unsigned level) {
KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
switch (level) {
case 1:
return KMP_HW_L1;
case 2:
return KMP_HW_L2;
case 3:
return KMP_HW_L3;
}
return KMP_HW_UNKNOWN;
}
private:
static const int MAX_CACHE_LEVEL = 3;
size_t depth;
info_t table[MAX_CACHE_LEVEL];
void get_leaf4_levels() {
unsigned level = 0;
while (depth < MAX_CACHE_LEVEL) {
unsigned cache_type, max_threads_sharing;
unsigned cache_level, cache_mask_width;
kmp_cpuid buf2;
__kmp_x86_cpuid(4, level, &buf2);
cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
if (!cache_type)
break;
// Skip instruction caches
if (cache_type == 2) {
level++;
continue;
}
max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
table[depth].level = cache_level;
table[depth].mask = ((-1) << cache_mask_width);
depth++;
level++;
}
}
};
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
// an algorithm which cycles through the available os threads, setting
// the current thread's affinity mask to that thread, and then retrieves
// the Apic Id for each thread context using the cpuid instruction.
static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
kmp_cpuid buf;
*msg_id = kmp_i18n_null;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
}
// Check if cpuid leaf 4 is supported.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax < 4) {
*msg_id = kmp_i18n_str_NoLeaf4Support;
return false;
}
// The algorithm used starts by setting the affinity to each available thread
// and retrieving info from the cpuid instruction, so if we are not capable of
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
// need to do something else - use the defaults that we calculated from
// issuing cpuid without binding to each proc.
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
// Get an upper bound on the number of threads per package using cpuid(1).
// On some OS/chps combinations where HT is supported by the chip but is
// disabled, this value will be 2 on a single core chip. Usually, it will be
// 2 if HT is enabled and 1 if HT is disabled.
__kmp_x86_cpuid(1, 0, &buf);
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (maxThreadsPerPkg == 0) {
maxThreadsPerPkg = 1;
}
// The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
// value.
//
// The author of cpu_count.cpp treated this only an upper bound on the
// number of cores, but I haven't seen any cases where it was greater than
// the actual number of cores, so we will treat it as exact in this block of
// code.
//
// First, we need to check if cpuid(4) is supported on this chip. To see if
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
// greater.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
} else {
nCoresPerPkg = 1;
}
// There is no way to reliably tell if HT is enabled without issuing the
// cpuid instruction from every thread, can correlating the cpuid info, so
// if the machine is not affinity capable, we assume that HT is off. We have
// seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
// does not support HT.
//
// - Older OSes are usually found on machines with older chips, which do not
// support HT.
// - The performance penalty for mistakenly identifying a machine as HT when
// it isn't (which results in blocktime being incorrectly set to 0) is
// greater than the penalty when for mistakenly identifying a machine as
// being 1 thread/core when it is really HT enabled (which results in
// blocktime being incorrectly set to a positive value).
__kmp_ncores = __kmp_xproc;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
__kmp_nThreadsPerCore = 1;
return true;
}
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
// __kmp_affinity_type = affinity_none.
// Save the affinity mask for the current thread.
kmp_affinity_raii_t previous_affinity;
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
//
// The relevant information is:
// - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
// - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
// of this field determines the width of the core# + thread# fields in the
// Apic Id. It is also an upper bound on the number of threads per
// package, but it has been verified that situations happen were it is not
// exact. In particular, on certain OS/chip combinations where Intel(R)
// Hyper-Threading Technology is supported by the chip but has been
// disabled, the value of this field will be 2 (for a single core chip).
// On other OS/chip combinations supporting Intel(R) Hyper-Threading
// Technology, the value of this field will be 1 when Intel(R)
// Hyper-Threading Technology is disabled and 2 when it is enabled.
// - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
// of this field (+1) determines the width of the core# field in the Apic
// Id. The comments in "cpucount.cpp" say that this value is an upper
// bound, but the IA-32 architecture manual says that it is exactly the
// number of cores per package, and I haven't seen any case where it
// wasn't.
//
// From this information, deduce the package Id, core Id, and thread Id,
// and set the corresponding fields in the apicThreadInfo struct.
unsigned i;
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
__kmp_avail_proc * sizeof(apicThreadInfo));
unsigned nApics = 0;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
__kmp_affinity_dispatch->bind_thread(i);
threadInfo[nApics].osId = i;
// The apic id and max threads per pkg come from cpuid(1).
__kmp_x86_cpuid(1, 0, &buf);
if (((buf.edx >> 9) & 1) == 0) {
__kmp_free(threadInfo);
*msg_id = kmp_i18n_str_ApicNotPresent;
return false;
}
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
threadInfo[nApics].maxThreadsPerPkg = 1;
}
// Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
// value.
//
// First, we need to check if cpuid(4) is supported on this chip. To see if
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
// or greater.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
} else {
threadInfo[nApics].maxCoresPerPkg = 1;
}
// Infer the pkgId / coreId / threadId using only the info obtained locally.
int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
int widthT = widthCT - widthC;
if (widthT < 0) {
// I've never seen this one happen, but I suppose it could, if the cpuid
// instruction on a chip was really screwed up. Make sure to restore the
// affinity mask before the tail call.
__kmp_free(threadInfo);
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return false;
}
int maskC = (1 << widthC) - 1;
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
int maskT = (1 << widthT) - 1;
threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
nApics++;
}
// We've collected all the info we need.
// Restore the old affinity mask for this thread.
previous_affinity.restore();
// Sort the threadInfo table by physical Id.
qsort(threadInfo, nApics, sizeof(*threadInfo),
__kmp_affinity_cmp_apicThreadInfo_phys_id);
// The table is now sorted by pkgId / coreId / threadId, but we really don't
// know the radix of any of the fields. pkgId's may be sparsely assigned among
// the chips on a system. Although coreId's are usually assigned
// [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
// total # packages) are at this point - we want to determine that now. We
// only have an upper bound on the first two figures.
//
// We also perform a consistency check at this point: the values returned by
// the cpuid instruction for any thread bound to a given package had better
// return the same info for maxThreadsPerPkg and maxCoresPerPkg.
nPackages = 1;
nCoresPerPkg = 1;
__kmp_nThreadsPerCore = 1;
unsigned nCores = 1;
unsigned pkgCt = 1; // to determine radii
unsigned lastPkgId = threadInfo[0].pkgId;
unsigned coreCt = 1;
unsigned lastCoreId = threadInfo[0].coreId;
unsigned threadCt = 1;
unsigned lastThreadId = threadInfo[0].threadId;
// intra-pkg consist checks
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
for (i = 1; i < nApics; i++) {
if (threadInfo[i].pkgId != lastPkgId) {
nCores++;
pkgCt++;
lastPkgId = threadInfo[i].pkgId;
if ((int)coreCt > nCoresPerPkg)
nCoresPerPkg = coreCt;
coreCt = 1;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
// This is a different package, so go on to the next iteration without
// doing any consistency checks. Reset the consistency check vars, though.
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
continue;
}
if (threadInfo[i].coreId != lastCoreId) {
nCores++;
coreCt++;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
} else if (threadInfo[i].threadId != lastThreadId) {
threadCt++;
lastThreadId = threadInfo[i].threadId;
} else {
__kmp_free(threadInfo);
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
return false;
}
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
// fields agree between all the threads bounds to a given package.
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
(prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
__kmp_free(threadInfo);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return false;
}
}
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly
nPackages = pkgCt;
if ((int)coreCt > nCoresPerPkg)
nCoresPerPkg = coreCt;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
__kmp_ncores = nCores;
KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
// Now that we've determined the number of packages, the number of cores per
// package, and the number of threads per core, we can construct the data
// structure that is to be returned.
int idx = 0;
int pkgLevel = 0;
int coreLevel = 1;
int threadLevel = 2;
//(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
kmp_hw_t types[3];
if (pkgLevel >= 0)
types[idx++] = KMP_HW_SOCKET;
if (coreLevel >= 0)
types[idx++] = KMP_HW_CORE;
if (threadLevel >= 0)
types[idx++] = KMP_HW_THREAD;
KMP_ASSERT(depth > 0);
__kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
for (i = 0; i < nApics; ++i) {
idx = 0;
unsigned os = threadInfo[i].osId;
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
hw_thread.clear();
if (pkgLevel >= 0) {
hw_thread.ids[idx++] = threadInfo[i].pkgId;
}
if (coreLevel >= 0) {
hw_thread.ids[idx++] = threadInfo[i].coreId;
}
if (threadLevel >= 0) {
hw_thread.ids[idx++] = threadInfo[i].threadId;
}
hw_thread.os_id = os;
}
__kmp_free(threadInfo);
__kmp_topology->sort_ids();
if (!__kmp_topology->check_ids()) {
kmp_topology_t::deallocate(__kmp_topology);
__kmp_topology = nullptr;
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
return false;
}
return true;
}
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
// architectures support a newer interface for specifying the x2APIC Ids,
// based on CPUID.B or CPUID.1F
/*
* CPUID.B or 1F, Input ECX (sub leaf # aka level number)
Bits Bits Bits Bits
31-16 15-8 7-4 4-0
---+-----------+--------------+-------------+-----------------+
EAX| reserved | reserved | reserved | Bits to Shift |
---+-----------|--------------+-------------+-----------------|
EBX| reserved | Num logical processors at level (16 bits) |
---+-----------|--------------+-------------------------------|
ECX| reserved | Level Type | Level Number (8 bits) |
---+-----------+--------------+-------------------------------|
EDX| X2APIC ID (32 bits) |
---+----------------------------------------------------------+
*/
enum {
INTEL_LEVEL_TYPE_INVALID = 0, // Package level
INTEL_LEVEL_TYPE_SMT = 1,
INTEL_LEVEL_TYPE_CORE = 2,
INTEL_LEVEL_TYPE_TILE = 3,
INTEL_LEVEL_TYPE_MODULE = 4,
INTEL_LEVEL_TYPE_DIE = 5,
INTEL_LEVEL_TYPE_LAST = 6,
};
struct cpuid_level_info_t {
unsigned level_type, mask, mask_width, nitems, cache_mask;
};
static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
switch (intel_type) {
case INTEL_LEVEL_TYPE_INVALID:
return KMP_HW_SOCKET;
case INTEL_LEVEL_TYPE_SMT:
return KMP_HW_THREAD;
case INTEL_LEVEL_TYPE_CORE:
return KMP_HW_CORE;
case INTEL_LEVEL_TYPE_TILE:
return KMP_HW_TILE;
case INTEL_LEVEL_TYPE_MODULE:
return KMP_HW_MODULE;
case INTEL_LEVEL_TYPE_DIE:
return KMP_HW_DIE;
}
return KMP_HW_UNKNOWN;
}
// This function takes the topology leaf, a levels array to store the levels
// detected and a bitmap of the known levels.
// Returns the number of levels in the topology
static unsigned
__kmp_x2apicid_get_levels(int leaf,
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
kmp_uint64 known_levels) {
unsigned level, levels_index;
unsigned level_type, mask_width, nitems;
kmp_cpuid buf;
// New algorithm has known topology layers act as highest unknown topology
// layers when unknown topology layers exist.
// e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
// are unknown topology layers, Then SMT will take the characteristics of
// (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
// This eliminates unknown portions of the topology while still keeping the
// correct structure.
level = levels_index = 0;
do {
__kmp_x86_cpuid(leaf, level, &buf);
level_type = __kmp_extract_bits<8, 15>(buf.ecx);
mask_width = __kmp_extract_bits<0, 4>(buf.eax);
nitems = __kmp_extract_bits<0, 15>(buf.ebx);
if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
return 0;
if (known_levels & (1ull << level_type)) {
// Add a new level to the topology
KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
levels[levels_index].level_type = level_type;
levels[levels_index].mask_width = mask_width;
levels[levels_index].nitems = nitems;
levels_index++;
} else {
// If it is an unknown level, then logically move the previous layer up
if (levels_index > 0) {
levels[levels_index - 1].mask_width = mask_width;
levels[levels_index - 1].nitems = nitems;
}
}
level++;
} while (level_type != INTEL_LEVEL_TYPE_INVALID);
// Set the masks to & with apicid
for (unsigned i = 0; i < levels_index; ++i) {
if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
levels[i].mask = ~((-1) << levels[i].mask_width);
levels[i].cache_mask = (-1) << levels[i].mask_width;
for (unsigned j = 0; j < i; ++j)
levels[i].mask ^= levels[j].mask;
} else {
KMP_DEBUG_ASSERT(levels_index > 0);
levels[i].mask = (-1) << levels[i - 1].mask_width;
levels[i].cache_mask = 0;
}
}
return levels_index;
}
static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
unsigned levels_index;
kmp_cpuid buf;
kmp_uint64 known_levels;
int topology_leaf, highest_leaf, apic_id;
int num_leaves;
static int leaves[] = {0, 0};
kmp_i18n_id_t leaf_message_id;
KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
*msg_id = kmp_i18n_null;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
}
// Figure out the known topology levels
known_levels = 0ull;
for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
known_levels |= (1ull << i);
}
}
// Get the highest cpuid leaf supported
__kmp_x86_cpuid(0, 0, &buf);
highest_leaf = buf.eax;
// If a specific topology method was requested, only allow that specific leaf
// otherwise, try both leaves 31 and 11 in that order
num_leaves = 0;
if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
num_leaves = 1;
leaves[0] = 11;
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
} else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
num_leaves = 1;
leaves[0] = 31;
leaf_message_id = kmp_i18n_str_NoLeaf31Support;
} else {
num_leaves = 2;
leaves[0] = 31;
leaves[1] = 11;
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
}
// Check to see if cpuid leaf 31 or 11 is supported.
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
topology_leaf = -1;
for (int i = 0; i < num_leaves; ++i) {
int leaf = leaves[i];
if (highest_leaf < leaf)
continue;
__kmp_x86_cpuid(leaf, 0, &buf);
if (buf.ebx == 0)
continue;
topology_leaf = leaf;
levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
if (levels_index == 0)
continue;
break;
}
if (topology_leaf == -1 || levels_index == 0) {
*msg_id = leaf_message_id;
return false;
}
KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
// The algorithm used starts by setting the affinity to each available thread
// and retrieving info from the cpuid instruction, so if we are not capable of
// calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
// we need to do something else - use the defaults that we calculated from
// issuing cpuid without binding to each proc.
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
for (unsigned i = 0; i < levels_index; ++i) {
if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
__kmp_nThreadsPerCore = levels[i].nitems;
} else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
nCoresPerPkg = levels[i].nitems;
}
}
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
return true;
}
// Allocate the data structure to be returned.
int depth = levels_index;
for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
__kmp_topology =
kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
// Insert equivalent cache types if they exist
kmp_cache_info_t cache_info;
for (size_t i = 0; i < cache_info.get_depth(); ++i) {
const kmp_cache_info_t::info_t &info = cache_info[i];
unsigned cache_mask = info.mask;
unsigned cache_level = info.level;
for (unsigned j = 0; j < levels_index; ++j) {
unsigned hw_cache_mask = levels[j].cache_mask;
kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
if (hw_cache_mask == cache_mask && j < levels_index - 1) {
kmp_hw_t type =
__kmp_intel_type_2_topology_type(levels[j + 1].level_type);
__kmp_topology->set_equivalent_type(cache_type, type);
}
}
}
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
// __kmp_affinity_type = affinity_none.
// Save the affinity mask for the current thread.
kmp_affinity_raii_t previous_affinity;
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
unsigned int proc;
int hw_thread_index = 0;
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
unsigned my_levels_index;
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
__kmp_affinity_dispatch->bind_thread(proc);
// New algorithm
__kmp_x86_cpuid(topology_leaf, 0, &buf);
apic_id = buf.edx;
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
my_levels_index =
__kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
if (my_levels_index == 0 || my_levels_index != levels_index) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return false;
}
hw_thread.clear();
hw_thread.os_id = proc;
// Put in topology information
for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
hw_thread.ids[idx] = apic_id & my_levels[j].mask;
if (j > 0) {
hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
}
}
hw_thread_index++;
}
KMP_ASSERT(hw_thread_index > 0);
__kmp_topology->sort_ids();
if (!__kmp_topology->check_ids()) {
kmp_topology_t::deallocate(__kmp_topology);
__kmp_topology = nullptr;
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
return false;
}
return true;
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#define osIdIndex 0
#define threadIdIndex 1
#define coreIdIndex 2
#define pkgIdIndex 3
#define nodeIdIndex 4
typedef unsigned *ProcCpuInfo;
static unsigned maxIndex = pkgIdIndex;
static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
const void *b) {
unsigned i;
const unsigned *aa = *(unsigned *const *)a;
const unsigned *bb = *(unsigned *const *)b;
for (i = maxIndex;; i--) {
if (aa[i] < bb[i])
return -1;
if (aa[i] > bb[i])
return 1;
if (i == osIdIndex)
break;
}
return 0;
}
#if KMP_USE_HIER_SCHED
// Set the array sizes for the hierarchy layers
static void __kmp_dispatch_set_hierarchy_values() {
// Set the maximum number of L1's to number of cores
// Set the maximum number of L2's to to either number of cores / 2 for
// Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
// Or the number of cores for Intel(R) Xeon(R) processors
// Set the maximum number of NUMA nodes and L3's to number of packages
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
KMP_MIC_SUPPORTED
if (__kmp_mic_type >= mic3)
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
else
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
// Set the number of threads per unit
// Number of hardware threads per L1/L2/L3/NUMA/LOOP
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
__kmp_nThreadsPerCore;
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
KMP_MIC_SUPPORTED
if (__kmp_mic_type >= mic3)
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2 * __kmp_nThreadsPerCore;
else
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
__kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
}
// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
// i.e., this thread's L1 or this thread's L2, etc.
int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
int index = type + 1;
int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
if (type == kmp_hier_layer_e::LAYER_THREAD)
return tid;
else if (type == kmp_hier_layer_e::LAYER_LOOP)
return 0;
KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
if (tid >= num_hw_threads)
tid = tid % num_hw_threads;
return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
}
// Return the number of t1's per t2
int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
int i1 = t1 + 1;
int i2 = t2 + 1;
KMP_DEBUG_ASSERT(i1 <= i2);
KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
// (nthreads/t2) / (nthreads/t1) = t1 / t2
return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
}
#endif // KMP_USE_HIER_SCHED
static inline const char *__kmp_cpuinfo_get_filename() {
const char *filename;
if (__kmp_cpuinfo_file != nullptr)
filename = __kmp_cpuinfo_file;
else
filename = "/proc/cpuinfo";
return filename;
}
static inline const char *__kmp_cpuinfo_get_envvar() {
const char *envvar = nullptr;
if (__kmp_cpuinfo_file != nullptr)
envvar = "KMP_CPUINFO_FILE";
return envvar;
}
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
// affinity map.
static bool __kmp_affinity_create_cpuinfo_map(int *line,
kmp_i18n_id_t *const msg_id) {
const char *filename = __kmp_cpuinfo_get_filename();
const char *envvar = __kmp_cpuinfo_get_envvar();
*msg_id = kmp_i18n_null;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
}
kmp_safe_raii_file_t f(filename, "r", envvar);
// Scan of the file, and count the number of "processor" (osId) fields,
// and find the highest value of <n> for a node_<n> field.
char buf[256];
unsigned num_records = 0;
while (!feof(f)) {
buf[sizeof(buf) - 1] = 1;
if (!fgets(buf, sizeof(buf), f)) {
// Read errors presumably because of EOF
break;
}
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
num_records++;
continue;
}
// FIXME - this will match "node_<n> <garbage>"
unsigned level;
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
// validate the input fisrt:
if (level > (unsigned)__kmp_xproc) { // level is too big
level = __kmp_xproc;
}
if (nodeIdIndex + level >= maxIndex) {
maxIndex = nodeIdIndex + level;
}
continue;
}
}
// Check for empty file / no valid processor records, or too many. The number
// of records can't exceed the number of valid bits in the affinity mask.
if (num_records == 0) {
*msg_id = kmp_i18n_str_NoProcRecords;
return false;
}
if (num_records > (unsigned)__kmp_xproc) {
*msg_id = kmp_i18n_str_TooManyProcRecords;
return false;
}
// Set the file pointer back to the beginning, so that we can scan the file
// again, this time performing a full parse of the data. Allocate a vector of
// ProcCpuInfo object, where we will place the data. Adding an extra element
// at the end allows us to remove a lot of extra checks for termination
// conditions.
if (fseek(f, 0, SEEK_SET) != 0) {
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
return false;
}
// Allocate the array of records to store the proc info in. The dummy
// element at the end makes the logic in filling them out easier to code.
unsigned **threadInfo =
(unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
unsigned i;
for (i = 0; i <= num_records; i++) {
threadInfo[i] =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
}
#define CLEANUP_THREAD_INFO \
for (i = 0; i <= num_records; i++) { \
__kmp_free(threadInfo[i]); \
} \
__kmp_free(threadInfo);
// A value of UINT_MAX means that we didn't find the field
unsigned __index;
#define INIT_PROC_INFO(p) \
for (__index = 0; __index <= maxIndex; __index++) { \
(p)[__index] = UINT_MAX; \
}
for (i = 0; i <= num_records; i++) {
INIT_PROC_INFO(threadInfo[i]);
}
unsigned num_avail = 0;
*line = 0;
while (!feof(f)) {
// Create an inner scoping level, so that all the goto targets at the end of
// the loop appear in an outer scoping level. This avoids warnings about
// jumping past an initialization to a target in the same block.
{
buf[sizeof(buf) - 1] = 1;
bool long_line = false;
if (!fgets(buf, sizeof(buf), f)) {
// Read errors presumably because of EOF
// If there is valid data in threadInfo[num_avail], then fake
// a blank line in ensure that the last address gets parsed.
bool valid = false;
for (i = 0; i <= maxIndex; i++) {
if (threadInfo[num_avail][i] != UINT_MAX) {
valid = true;
}
}
if (!valid) {
break;
}
buf[0] = 0;
} else if (!buf[sizeof(buf) - 1]) {
// The line is longer than the buffer. Set a flag and don't
// emit an error if we were going to ignore the line, anyway.
long_line = true;
#define CHECK_LINE \
if (long_line) { \
CLEANUP_THREAD_INFO; \
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
return false; \
}
}
(*line)++;
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s1) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
#if KMP_ARCH_AARCH64
// Handle the old AArch64 /proc/cpuinfo layout differently,
// it contains all of the 'processor' entries listed in a
// single 'Processor' section, therefore the normal looking
// for duplicates in that section will always fail.
num_avail++;
#else
goto dup_field;
#endif
threadInfo[num_avail][osIdIndex] = val;
#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
char path[256];
KMP_SNPRINTF(
path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
KMP_SNPRINTF(path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/core_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
continue;
#else
}
char s2[] = "physical id";
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s2) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][pkgIdIndex] = val;
continue;
}
char s3[] = "core id";
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s3) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][coreIdIndex] = val;
continue;
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
}
char s4[] = "thread id";
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][threadIdIndex] = val;
continue;
}
unsigned level;
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
KMP_ASSERT(nodeIdIndex + level <= maxIndex);
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][nodeIdIndex + level] = val;
continue;
}
// We didn't recognize the leading token on the line. There are lots of
// leading tokens that we don't recognize - if the line isn't empty, go on
// to the next line.
if ((*buf != 0) && (*buf != '\n')) {
// If the line is longer than the buffer, read characters
// until we find a newline.
if (long_line) {
int ch;
while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
;
}
continue;
}
// A newline has signalled the end of the processor record.
// Check that there aren't too many procs specified.
if ((int)num_avail == __kmp_xproc) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_TooManyEntries;
return false;
}
// Check for missing fields. The osId field must be there, and we
// currently require that the physical id field is specified, also.
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingProcField;
return false;
}
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
return false;
}
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
__kmp_affin_fullMask)) {
INIT_PROC_INFO(threadInfo[num_avail]);
continue;
}
// We have a successful parse of this proc's info.
// Increment the counter, and prepare for the next proc.
num_avail++;
KMP_ASSERT(num_avail <= num_records);
INIT_PROC_INFO(threadInfo[num_avail]);
}
continue;
no_val:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingValCpuinfo;
return false;
dup_field:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
return false;
}
*line = 0;
#if KMP_MIC && REDUCE_TEAM_SIZE
unsigned teamSize = 0;
#endif // KMP_MIC && REDUCE_TEAM_SIZE
// check for num_records == __kmp_xproc ???
// If it is configured to omit the package level when there is only a single
// package, the logic at the end of this routine won't work if there is only a
// single thread
KMP_ASSERT(num_avail > 0);
KMP_ASSERT(num_avail <= num_records);
// Sort the threadInfo table by physical Id.
qsort(threadInfo, num_avail, sizeof(*threadInfo),
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
// The table is now sorted by pkgId / coreId / threadId, but we really don't
// know the radix of any of the fields. pkgId's may be sparsely assigned among
// the chips on a system. Although coreId's are usually assigned
// [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
// total # packages) are at this point - we want to determine that now. We
// only have an upper bound on the first two figures.
unsigned *counts =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *maxCt =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *totals =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *lastId =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
bool assign_thread_ids = false;
unsigned threadIdCt;
unsigned index;
restart_radix_check:
threadIdCt = 0;
// Initialize the counter arrays with data from threadInfo[0].
if (assign_thread_ids) {
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
threadInfo[0][threadIdIndex] = threadIdCt++;
} else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
threadIdCt = threadInfo[0][threadIdIndex] + 1;
}
}
for (index = 0; index <= maxIndex; index++) {
counts[index] = 1;
maxCt[index] = 1;
totals[index] = 1;
lastId[index] = threadInfo[0][index];
;
}
// Run through the rest of the OS procs.
for (i = 1; i < num_avail; i++) {
// Find the most significant index whose id differs from the id for the
// previous OS proc.
for (index = maxIndex; index >= threadIdIndex; index--) {
if (assign_thread_ids && (index == threadIdIndex)) {
// Auto-assign the thread id field if it wasn't specified.
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
// Apparently the thread id field was specified for some entries and not
// others. Start the thread id counter off at the next higher thread id.
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
if (threadInfo[i][index] != lastId[index]) {
// Run through all indices which are less significant, and reset the
// counts to 1. At all levels up to and including index, we need to
// increment the totals and record the last id.
unsigned index2;
for (index2 = threadIdIndex; index2 < index; index2++) {
totals[index2]++;
if (counts[index2] > maxCt[index2]) {
maxCt[index2] = counts[index2];
}
counts[index2] = 1;
lastId[index2] = threadInfo[i][index2];
}
counts[index]++;
totals[index]++;
lastId[index] = threadInfo[i][index];
if (assign_thread_ids && (index > threadIdIndex)) {
#if KMP_MIC && REDUCE_TEAM_SIZE
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
#endif // KMP_MIC && REDUCE_TEAM_SIZE
// Restart the thread counter, as we are on a new core.
threadIdCt = 0;
// Auto-assign the thread id field if it wasn't specified.
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
// Apparently the thread id field was specified for some entries and
// not others. Start the thread id counter off at the next higher
// thread id.
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
break;
}
}
if (index < threadIdIndex) {
// If thread ids were specified, it is an error if they are not unique.
// Also, check that we waven't already restarted the loop (to be safe -
// shouldn't need to).
if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
return false;
}
// If the thread ids were not specified and we see entries entries that
// are duplicates, start the loop over and assign the thread ids manually.
assign_thread_ids = true;
goto restart_radix_check;
}
}
#if KMP_MIC && REDUCE_TEAM_SIZE
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
#endif // KMP_MIC && REDUCE_TEAM_SIZE
for (index = threadIdIndex; index <= maxIndex; index++) {
if (counts[index] > maxCt[index]) {
maxCt[index] = counts[index];
}
}
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
nCoresPerPkg = maxCt[coreIdIndex];
nPackages = totals[pkgIdIndex];
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return now if affinity is
// not enabled.
__kmp_ncores = totals[coreIdIndex];
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(__kmp_affinity_type == affinity_none);
return true;
}
#if KMP_MIC && REDUCE_TEAM_SIZE
// Set the default team size.
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
__kmp_dflt_team_nth = teamSize;
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
"__kmp_dflt_team_nth = %d\n",
__kmp_dflt_team_nth));
}
#endif // KMP_MIC && REDUCE_TEAM_SIZE
KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
// Count the number of levels which have more nodes at that level than at the
// parent's level (with there being an implicit root node of the top level).
// This is equivalent to saying that there is at least one node at this level
// which has a sibling. These levels are in the map, and the package level is
// always in the map.
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
for (index = threadIdIndex; index < maxIndex; index++) {
KMP_ASSERT(totals[index] >= totals[index + 1]);
inMap[index] = (totals[index] > totals[index + 1]);
}
inMap[maxIndex] = (totals[maxIndex] > 1);
inMap[pkgIdIndex] = true;
inMap[coreIdIndex] = true;
inMap[threadIdIndex] = true;
int depth = 0;
int idx = 0;
kmp_hw_t types[KMP_HW_LAST];
int pkgLevel = -1;
int coreLevel = -1;
int threadLevel = -1;
for (index = threadIdIndex; index <= maxIndex; index++) {
if (inMap[index]) {
depth++;
}
}
if (inMap[pkgIdIndex]) {
pkgLevel = idx;
types[idx++] = KMP_HW_SOCKET;
}
if (inMap[coreIdIndex]) {
coreLevel = idx;
types[idx++] = KMP_HW_CORE;
}
if (inMap[threadIdIndex]) {
threadLevel = idx;
types[idx++] = KMP_HW_THREAD;
}
KMP_ASSERT(depth > 0);
// Construct the data structure that is to be returned.
__kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
for (i = 0; i < num_avail; ++i) {
unsigned os = threadInfo[i][osIdIndex];
int src_index;
int dst_index = 0;
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
hw_thread.clear();
hw_thread.os_id = os;
idx = 0;
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
if (!inMap[src_index]) {
continue;
}
if (src_index == pkgIdIndex) {
hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
} else if (src_index == coreIdIndex) {
hw_thread.ids[coreLevel] = threadInfo[i][src_index];
} else if (src_index == threadIdIndex) {
hw_thread.ids[threadLevel] = threadInfo[i][src_index];
}
dst_index++;
}
}
__kmp_free(inMap);
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
__kmp_topology->sort_ids();
if (!__kmp_topology->check_ids()) {
kmp_topology_t::deallocate(__kmp_topology);
__kmp_topology = nullptr;
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
return false;
}
return true;
}
// Create and return a table of affinity masks, indexed by OS thread ID.
// This routine handles OR'ing together all the affinity masks of threads
// that are sufficiently close, if granularity > fine.
static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
unsigned *numUnique) {
// First form a table of affinity masks in order of OS thread id.
int maxOsId;
int i;
int numAddrs = __kmp_topology->get_num_hw_threads();
int depth = __kmp_topology->get_depth();
KMP_ASSERT(numAddrs);
KMP_ASSERT(depth);
maxOsId = 0;
for (i = numAddrs - 1;; --i) {
int osId = __kmp_topology->at(i).os_id;
if (osId > maxOsId) {
maxOsId = osId;
}
if (i == 0)
break;
}
kmp_affin_mask_t *osId2Mask;
KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
}
if (__kmp_affinity_gran_levels >= (int)depth) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffThreadsMayMigrate);
}
}
// Run through the table, forming the masks for all threads on each core.
// Threads on the same core will have identical kmp_hw_thread_t objects, not
// considering the last level, which must be the thread id. All threads on a
// core will appear consecutively.
int unique = 0;
int j = 0; // index of 1st thread on core
int leader = 0;
kmp_affin_mask_t *sum;
KMP_CPU_ALLOC_ON_STACK(sum);
KMP_CPU_ZERO(sum);
KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
for (i = 1; i < numAddrs; i++) {
// If this thread is sufficiently close to the leader (within the
// granularity setting), then set the bit for this os thread in the
// affinity mask for this group, and go on to the next thread.
if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
continue;
}
// For every thread in this group, copy the mask to the thread's entry in
// the osId2Mask table. Mark the first address as a leader.
for (; j < i; j++) {
int osId = __kmp_topology->at(j).os_id;
KMP_DEBUG_ASSERT(osId <= maxOsId);
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
KMP_CPU_COPY(mask, sum);
__kmp_topology->at(j).leader = (j == leader);
}
unique++;
// Start a new mask.
leader = i;
KMP_CPU_ZERO(sum);
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
}
// For every thread in last group, copy the mask to the thread's
// entry in the osId2Mask table.
for (; j < i; j++) {
int osId = __kmp_topology->at(j).os_id;
KMP_DEBUG_ASSERT(osId <= maxOsId);
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
KMP_CPU_COPY(mask, sum);
__kmp_topology->at(j).leader = (j == leader);
}
unique++;
KMP_CPU_FREE_FROM_STACK(sum);
*maxIndex = maxOsId;
*numUnique = unique;
return osId2Mask;
}
// Stuff for the affinity proclist parsers. It's easier to declare these vars
// as file-static than to try and pass them through the calling sequence of
// the recursive-descent OMP_PLACES parser.
static kmp_affin_mask_t *newMasks;
static int numNewMasks;
static int nextNewMask;
#define ADD_MASK(_mask) \
{ \
if (nextNewMask >= numNewMasks) { \
int i; \
numNewMasks *= 2; \
kmp_affin_mask_t *temp; \
KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
for (i = 0; i < numNewMasks / 2; i++) { \
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
KMP_CPU_COPY(dest, src); \
} \
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
newMasks = temp; \
} \
KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
nextNewMask++; \
}
#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
{ \
if (((_osId) > _maxOsId) || \
(!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
if (__kmp_affinity_verbose || \
(__kmp_affinity_warnings && \
(__kmp_affinity_type != affinity_none))) { \
KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
} \
} else { \
ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
} \
}
// Re-parse the proclist (for the explicit affinity type), and form the list
// of affinity newMasks indexed by gtid.
static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
unsigned int *out_numMasks,
const char *proclist,
kmp_affin_mask_t *osId2Mask,
int maxOsId) {
int i;
const char *scan = proclist;
const char *next = proclist;
// We use malloc() for the temporary mask vector, so that we can use
// realloc() to extend it.
numNewMasks = 2;
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
nextNewMask = 0;
kmp_affin_mask_t *sumMask;
KMP_CPU_ALLOC(sumMask);
int setSize = 0;
for (;;) {
int start, end, stride;
SKIP_WS(scan);
next = scan;
if (*next == '\0') {
break;
}
if (*next == '{') {
int num;
setSize = 0;
next++; // skip '{'
SKIP_WS(next);
scan = next;
// Read the first integer in the set.
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(num >= 0, "bad explicit proc list");
// Copy the mask for that osId to the sum (union) mask.
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
KMP_CPU_ZERO(sumMask);
} else {
KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
setSize = 1;
}
for (;;) {
// Check for end of set.
SKIP_WS(next);
if (*next == '}') {
next++; // skip '}'
break;
}
// Skip optional comma.
if (*next == ',') {
next++;
}
SKIP_WS(next);
// Read the next integer in the set.
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(num >= 0, "bad explicit proc list");
// Add the mask for that osId to the sum mask.
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
} else {
KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
setSize++;
}
}
if (setSize > 0) {
ADD_MASK(sumMask);
}
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// Read the first integer.
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
start = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(start >= 0, "bad explicit proc list");
SKIP_WS(next);
// If this isn't a range, then add a mask to the list and go on.
if (*next != '-') {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
// Skip optional comma.
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// This is a range. Skip over the '-' and read in the 2nd int.
next++; // skip '-'
SKIP_WS(next);
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
end = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(end >= 0, "bad explicit proc list");
// Check for a stride parameter
stride = 1;
SKIP_WS(next);
if (*next == ':') {
// A stride is specified. Skip over the ':" and read the 3rd int.
int sign = +1;
next++; // skip ':'
SKIP_WS(next);
scan = next;
if (*next == '-') {
sign = -1;
next++;
SKIP_WS(next);
scan = next;
}
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(stride >= 0, "bad explicit proc list");
stride *= sign;
}
// Do some range checks.
KMP_ASSERT2(stride != 0, "bad explicit proc list");
if (stride > 0) {
KMP_ASSERT2(start <= end, "bad explicit proc list");
} else {
KMP_ASSERT2(start >= end, "bad explicit proc list");
}
KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
// Add the mask for each OS proc # to the list.
if (stride > 0) {
do {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
start += stride;
} while (start <= end);
} else {
do {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
start += stride;
} while (start >= end);
}
// Skip optional comma.
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
}
*out_numMasks = nextNewMask;
if (nextNewMask == 0) {
*out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
return;
}
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
for (i = 0; i < nextNewMask; i++) {
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
KMP_CPU_COPY(dest, src);
}
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
KMP_CPU_FREE(sumMask);
}
/*-----------------------------------------------------------------------------
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
places. Again, Here is the grammar:
place_list := place
place_list := place , place_list
place := num
place := place : num
place := place : num : signed
place := { subplacelist }
place := ! place // (lowest priority)
subplace_list := subplace
subplace_list := subplace , subplace_list
subplace := num
subplace := num : num
subplace := num : num : signed
signed := num
signed := + signed
signed := - signed
-----------------------------------------------------------------------------*/
static void __kmp_process_subplace_list(const char **scan,
kmp_affin_mask_t *osId2Mask,
int maxOsId, kmp_affin_mask_t *tempMask,
int *setSize) {
const char *next;
for (;;) {
int start, count, stride, i;
// Read in the starting proc id
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
start = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(start >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
(*setSize)++;
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(**scan == ':', "bad explicit places list");
(*scan)++; // skip ':'
// Read count parameter
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(count >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
for (i = 0; i < count; i++) {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
break; // don't proliferate warnings for large count
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
start++;
(*setSize)++;
}
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(**scan == ':', "bad explicit places list");
(*scan)++; // skip ':'
// Read stride parameter
int sign = +1;
for (;;) {
SKIP_WS(*scan);
if (**scan == '+') {
(*scan)++; // skip '+'
continue;
}
if (**scan == '-') {
sign *= -1;
(*scan)++; // skip '-'
continue;
}
break;
}
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(stride >= 0);
*scan = next;
stride *= sign;
// valid follow sets are ',' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
for (i = 0; i < count; i++) {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
break; // don't proliferate warnings for large count
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
start += stride;
(*setSize)++;
}
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(0, "bad explicit places list");
}
}
static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
int maxOsId, kmp_affin_mask_t *tempMask,
int *setSize) {
const char *next;
// valid follow sets are '{' '!' and num
SKIP_WS(*scan);
if (**scan == '{') {
(*scan)++; // skip '{'
__kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
KMP_ASSERT2(**scan == '}', "bad explicit places list");
(*scan)++; // skip '}'
} else if (**scan == '!') {
(*scan)++; // skip '!'
__kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
KMP_CPU_COMPLEMENT(maxOsId, tempMask);
} else if ((**scan >= '0') && (**scan <= '9')) {
next = *scan;
SKIP_DIGITS(next);
int num = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(num >= 0);
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
(*setSize)++;
}
*scan = next; // skip num
} else {
KMP_ASSERT2(0, "bad explicit places list");
}
}
// static void
void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
unsigned int *out_numMasks,
const char *placelist,
kmp_affin_mask_t *osId2Mask,
int maxOsId) {
int i, j, count, stride, sign;
const char *scan = placelist;
const char *next = placelist;
numNewMasks = 2;
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
nextNewMask = 0;
// tempMask is modified based on the previous or initial
// place to form the current place
// previousMask contains the previous place
kmp_affin_mask_t *tempMask;
kmp_affin_mask_t *previousMask;
KMP_CPU_ALLOC(tempMask);
KMP_CPU_ZERO(tempMask);
KMP_CPU_ALLOC(previousMask);
KMP_CPU_ZERO(previousMask);
int setSize = 0;
for (;;) {
__kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0' || *scan == ',') {
if (setSize > 0) {
ADD_MASK(tempMask);
}
KMP_CPU_ZERO(tempMask);
setSize = 0;
if (*scan == '\0') {
break;
}
scan++; // skip ','
continue;
}
KMP_ASSERT2(*scan == ':', "bad explicit places list");
scan++; // skip ':'
// Read count parameter
SKIP_WS(scan);
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
next = scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(scan, *next);
KMP_ASSERT(count >= 0);
scan = next;
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0' || *scan == ',') {
stride = +1;
} else {
KMP_ASSERT2(*scan == ':', "bad explicit places list");
scan++; // skip ':'
// Read stride parameter
sign = +1;
for (;;) {
SKIP_WS(scan);
if (*scan == '+') {
scan++; // skip '+'
continue;
}
if (*scan == '-') {
sign *= -1;
scan++; // skip '-'
continue;
}
break;
}
SKIP_WS(scan);
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
next = scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_DEBUG_ASSERT(stride >= 0);
scan = next;
stride *= sign;
}
// Add places determined by initial_place : count : stride
for (i = 0; i < count; i++) {
if (setSize == 0) {
break;
}
// Add the current place, then build the next place (tempMask) from that
KMP_CPU_COPY(previousMask, tempMask);
ADD_MASK(previousMask);
KMP_CPU_ZERO(tempMask);
setSize = 0;
KMP_CPU_SET_ITERATE(j, previousMask) {
if (!KMP_CPU_ISSET(j, previousMask)) {
continue;
}
if ((j + stride > maxOsId) || (j + stride < 0) ||
(!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
(!KMP_CPU_ISSET(j + stride,
KMP_CPU_INDEX(osId2Mask, j + stride)))) {
if ((__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) &&
i < count - 1) {
KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
}
continue;
}
KMP_CPU_SET(j + stride, tempMask);
setSize++;
}
}
KMP_CPU_ZERO(tempMask);
setSize = 0;
// valid follow sets are ',' and EOL
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
if (*scan == ',') {
scan++; // skip ','
continue;
}
KMP_ASSERT2(0, "bad explicit places list");
}
*out_numMasks = nextNewMask;
if (nextNewMask == 0) {
*out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
return;
}
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
KMP_CPU_FREE(tempMask);
KMP_CPU_FREE(previousMask);
for (i = 0; i < nextNewMask; i++) {
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
KMP_CPU_COPY(dest, src);
}
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
}
#undef ADD_MASK
#undef ADD_MASK_OSID
// This function figures out the deepest level at which there is at least one
// cluster/core with more than one processing unit bound to it.
static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
int core_level = 0;
for (int i = 0; i < nprocs; i++) {
const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
for (int j = bottom_level; j > 0; j--) {
if (hw_thread.ids[j] > 0) {
if (core_level < (j - 1)) {
core_level = j - 1;
}
}
}
}
return core_level;
}
// This function counts number of clusters/cores at given level.
static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
int core_level) {
return __kmp_topology->get_count(core_level);
}
// This function finds to which cluster/core given processing unit is bound.
static int __kmp_affinity_find_core(int proc, int bottom_level,
int core_level) {
int core = 0;
KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
for (int i = 0; i <= proc; ++i) {
if (i + 1 <= proc) {
for (int j = 0; j <= core_level; ++j) {
if (__kmp_topology->at(i + 1).sub_ids[j] !=
__kmp_topology->at(i).sub_ids[j]) {
core++;
break;
}
}
}
}
return core;
}
// This function finds maximal number of processing units bound to a
// cluster/core at given level.
static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
int core_level) {
if (core_level >= bottom_level)
return 1;
int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
return __kmp_topology->calculate_ratio(thread_level, core_level);
}
static int *procarr = NULL;
static int __kmp_aff_depth = 0;
// Create a one element mask array (set of places) which only contains the
// initial process's affinity mask
static void __kmp_create_affinity_none_places() {
KMP_ASSERT(__kmp_affin_fullMask != NULL);
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_affinity_num_masks = 1;
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
KMP_CPU_COPY(dest, __kmp_affin_fullMask);
}
static void __kmp_aux_affinity_initialize(void) {
if (__kmp_affinity_masks != NULL) {
KMP_ASSERT(__kmp_affin_fullMask != NULL);
return;
}
// Create the "full" mask - this defines all of the processors that we
// consider to be in the machine model. If respect is set, then it is the
// initialization thread's affinity mask. Otherwise, it is all processors that
// we know about on the machine.
if (__kmp_affin_fullMask == NULL) {
KMP_CPU_ALLOC(__kmp_affin_fullMask);
}
if (KMP_AFFINITY_CAPABLE()) {
__kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
if (__kmp_affinity_respect_mask) {
// Count the number of available processors.
unsigned i;
__kmp_avail_proc = 0;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_avail_proc++;
}
if (__kmp_avail_proc > __kmp_xproc) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(ErrorInitializeAffinity);
}
__kmp_affinity_type = affinity_none;
KMP_AFFINITY_DISABLE();
return;
}
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
}
} else {
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
__kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
__kmp_avail_proc = __kmp_xproc;
#if KMP_OS_WINDOWS
// Set the process affinity mask since threads' affinity
// masks must be subset of process mask in Windows* OS
__kmp_affin_fullMask->set_process_affinity(true);
#endif
}
}
kmp_i18n_id_t msg_id = kmp_i18n_null;
// For backward compatibility, setting KMP_CPUINFO_FILE =>
// KMP_TOPOLOGY_METHOD=cpuinfo
if ((__kmp_cpuinfo_file != NULL) &&
(__kmp_affinity_top_method == affinity_top_method_all)) {
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
}
bool success = false;
if (__kmp_affinity_top_method == affinity_top_method_all) {
// In the default code path, errors are not fatal - we just try using
// another method. We only emit a warning message if affinity is on, or the
// verbose flag is set, an the nowarnings flag was not set.
#if KMP_USE_HWLOC
if (!success &&
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
if (!__kmp_hwloc_error) {
success = __kmp_affinity_create_hwloc_map(&msg_id);
if (!success && __kmp_affinity_verbose) {
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
}
} else if (__kmp_affinity_verbose) {
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
}
}
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
if (!success) {
success = __kmp_affinity_create_x2apicid_map(&msg_id);
if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
}
}
if (!success) {
success = __kmp_affinity_create_apicid_map(&msg_id);
if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#if KMP_OS_LINUX
if (!success) {
int line = 0;
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_OS_LINUX */
#if KMP_GROUP_AFFINITY
if (!success && (__kmp_num_proc_groups > 1)) {
success = __kmp_affinity_create_proc_group_map(&msg_id);
if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_GROUP_AFFINITY */
if (!success) {
success = __kmp_affinity_create_flat_map(&msg_id);
if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
}
KMP_ASSERT(success);
}
}
// If the user has specified that a paricular topology discovery method is to be
// used, then we abort if that method fails. The exception is group affinity,
// which might have been implicitly set.
#if KMP_USE_HWLOC
else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
success = __kmp_affinity_create_hwloc_map(&msg_id);
if (!success) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
}
#endif // KMP_USE_HWLOC
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
success = __kmp_affinity_create_x2apicid_map(&msg_id);
if (!success) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
} else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
success = __kmp_affinity_create_apicid_map(&msg_id);
if (!success) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
int line = 0;
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
if (!success) {
KMP_ASSERT(msg_id != kmp_i18n_null);
const char *filename = __kmp_cpuinfo_get_filename();
if (line > 0) {
KMP_FATAL(FileLineMsgExiting, filename, line,
__kmp_i18n_catgets(msg_id));
} else {
KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
}
}
}
#if KMP_GROUP_AFFINITY
else if (__kmp_affinity_top_method == affinity_top_method_group) {
success = __kmp_affinity_create_proc_group_map(&msg_id);
KMP_ASSERT(success);
if (!success) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_GROUP_AFFINITY */
else if (__kmp_affinity_top_method == affinity_top_method_flat) {
success = __kmp_affinity_create_flat_map(&msg_id);
// should not fail
KMP_ASSERT(success);
}
// Early exit if topology could not be created
if (!__kmp_topology) {
if (KMP_AFFINITY_CAPABLE() &&
(__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
KMP_WARNING(ErrorInitializeAffinity);
}
if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
__kmp_ncores > 0) {
__kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
__kmp_topology->canonicalize(nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
if (__kmp_affinity_verbose) {
__kmp_topology->print("KMP_AFFINITY");
}
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
#if KMP_USE_HIER_SCHED
__kmp_dispatch_set_hierarchy_values();
#endif
KMP_AFFINITY_DISABLE();
return;
}
// Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
// initialize other data structures which depend on the topology
__kmp_topology->canonicalize();
if (__kmp_affinity_verbose)
__kmp_topology->print("KMP_AFFINITY");
bool filtered = __kmp_topology->filter_hw_subset();
if (filtered && __kmp_affinity_verbose)
__kmp_topology->print("KMP_HW_SUBSET");
machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
// If KMP_AFFINITY=none, then only create the single "none" place
// which is the process's initial affinity mask or the number of
// hardware threads depending on respect,norespect
if (__kmp_affinity_type == affinity_none) {
__kmp_create_affinity_none_places();
#if KMP_USE_HIER_SCHED
__kmp_dispatch_set_hierarchy_values();
#endif
return;
}
int depth = __kmp_topology->get_depth();
// Create the table of masks, indexed by thread Id.
unsigned maxIndex;
unsigned numUnique;
kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
if (__kmp_affinity_gran_levels == 0) {
KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
}
switch (__kmp_affinity_type) {
case affinity_explicit:
KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
__kmp_affinity_process_proclist(
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
__kmp_affinity_proclist, osId2Mask, maxIndex);
} else {
__kmp_affinity_process_placelist(
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
__kmp_affinity_proclist, osId2Mask, maxIndex);
}
if (__kmp_affinity_num_masks == 0) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffNoValidProcID);
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
return;
}
break;
// The other affinity types rely on sorting the hardware threads according to
// some permutation of the machine topology tree. Set __kmp_affinity_compact
// and __kmp_affinity_offset appropriately, then jump to a common code
// fragment to do the sort and create the array of affinity masks.
case affinity_logical:
__kmp_affinity_compact = 0;
if (__kmp_affinity_offset) {
__kmp_affinity_offset =
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
}
goto sortTopology;
case affinity_physical:
if (__kmp_nThreadsPerCore > 1) {
__kmp_affinity_compact = 1;
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = 0;
}
} else {
__kmp_affinity_compact = 0;
}
if (__kmp_affinity_offset) {
__kmp_affinity_offset =
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
}
goto sortTopology;
case affinity_scatter:
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = 0;
} else {
__kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
}
goto sortTopology;
case affinity_compact:
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = depth - 1;
}
goto sortTopology;
case affinity_balanced:
if (depth <= 1) {
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
return;
} else if (!__kmp_topology->is_uniform()) {
// Save the depth for further usage
__kmp_aff_depth = depth;
int core_level =
__kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
core_level);
int maxprocpercore = __kmp_affinity_max_proc_per_core(
__kmp_avail_proc, depth - 1, core_level);
int nproc = ncores * maxprocpercore;
if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
}
__kmp_affinity_type = affinity_none;
return;
}
procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
for (int i = 0; i < nproc; i++) {
procarr[i] = -1;
}
int lastcore = -1;
int inlastcore = 0;
for (int i = 0; i < __kmp_avail_proc; i++) {
int proc = __kmp_topology->at(i).os_id;
int core = __kmp_affinity_find_core(i, depth - 1, core_level);
if (core == lastcore) {
inlastcore++;
} else {
inlastcore = 0;
}
lastcore = core;
procarr[core * maxprocpercore + inlastcore] = proc;
}
}
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = depth - 1;
}
sortTopology:
// Allocate the gtid->affinity mask table.
if (__kmp_affinity_dups) {
__kmp_affinity_num_masks = __kmp_avail_proc;
} else {
__kmp_affinity_num_masks = numUnique;
}
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
(__kmp_affinity_num_places > 0) &&
((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
__kmp_affinity_num_masks = __kmp_affinity_num_places;
}
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
// Sort the topology table according to the current setting of
// __kmp_affinity_compact, then fill out __kmp_affinity_masks.
__kmp_topology->sort_compact();
{
int i;
unsigned j;
int num_hw_threads = __kmp_topology->get_num_hw_threads();
for (i = 0, j = 0; i < num_hw_threads; i++) {
if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
continue;
}
int osId = __kmp_topology->at(i).os_id;
kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
KMP_ASSERT(KMP_CPU_ISSET(osId, src));
KMP_CPU_COPY(dest, src);
if (++j >= __kmp_affinity_num_masks) {
break;
}
}
KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
}
// Sort the topology back using ids
__kmp_topology->sort_ids();
break;
default:
KMP_ASSERT2(0, "Unexpected affinity setting");
}
KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
}
void __kmp_affinity_initialize(void) {
// Much of the code above was written assuming that if a machine was not
// affinity capable, then __kmp_affinity_type == affinity_none. We now
// explicitly represent this as __kmp_affinity_type == affinity_disabled.
// There are too many checks for __kmp_affinity_type == affinity_none
// in this code. Instead of trying to change them all, check if
// __kmp_affinity_type == affinity_disabled, and if so, slam it with
// affinity_none, call the real initialization routine, then restore
// __kmp_affinity_type to affinity_disabled.
int disabled = (__kmp_affinity_type == affinity_disabled);
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(disabled);
}
if (disabled) {
__kmp_affinity_type = affinity_none;
}
__kmp_aux_affinity_initialize();
if (disabled) {
__kmp_affinity_type = affinity_disabled;
}
}
void __kmp_affinity_uninitialize(void) {
if (__kmp_affinity_masks != NULL) {
KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
__kmp_affinity_masks = NULL;
}
if (__kmp_affin_fullMask != NULL) {
KMP_CPU_FREE(__kmp_affin_fullMask);
__kmp_affin_fullMask = NULL;
}
__kmp_affinity_num_masks = 0;
__kmp_affinity_type = affinity_default;
__kmp_affinity_num_places = 0;
if (__kmp_affinity_proclist != NULL) {
__kmp_free(__kmp_affinity_proclist);
__kmp_affinity_proclist = NULL;
}
if (procarr != NULL) {
__kmp_free(procarr);
procarr = NULL;
}
#if KMP_USE_HWLOC
if (__kmp_hwloc_topology != NULL) {
hwloc_topology_destroy(__kmp_hwloc_topology);
__kmp_hwloc_topology = NULL;
}
#endif
if (__kmp_hw_subset) {
kmp_hw_subset_t::deallocate(__kmp_hw_subset);
__kmp_hw_subset = nullptr;
}
if (__kmp_topology) {
kmp_topology_t::deallocate(__kmp_topology);
__kmp_topology = nullptr;
}
KMPAffinity::destroy_api();
}
void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
if (!KMP_AFFINITY_CAPABLE()) {
return;
}
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
if (th->th.th_affin_mask == NULL) {
KMP_CPU_ALLOC(th->th.th_affin_mask);
} else {
KMP_CPU_ZERO(th->th.th_affin_mask);
}
// Copy the thread mask to the kmp_info_t structure. If
// __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
// has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
// then the full mask is the same as the mask of the initialization thread.
kmp_affin_mask_t *mask;
int i;
if (KMP_AFFINITY_NON_PROC_BIND) {
if ((__kmp_affinity_type == affinity_none) ||
(__kmp_affinity_type == affinity_balanced) ||
KMP_HIDDEN_HELPER_THREAD(gtid)) {
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return;
}
#endif
KMP_ASSERT(__kmp_affin_fullMask != NULL);
i = 0;
mask = __kmp_affin_fullMask;
} else {
int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
}
} else {
if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
(__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return;
}
#endif
KMP_ASSERT(__kmp_affin_fullMask != NULL);
i = KMP_PLACE_ALL;
mask = __kmp_affin_fullMask;
} else {
// int i = some hash function or just a counter that doesn't
// always start at 0. Use adjusted gtid for now.
int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
}
}
th->th.th_current_place = i;
if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
th->th.th_new_place = i;
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
} else if (KMP_AFFINITY_NON_PROC_BIND) {
// When using a Non-OMP_PROC_BIND affinity method,
// set all threads' place-partition-var to the entire place list
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
}
if (i == KMP_PLACE_ALL) {
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
gtid));
} else {
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
gtid, i));
}
KMP_CPU_COPY(th->th.th_affin_mask, mask);
if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
/* to avoid duplicate printing (will be correctly printed on barrier) */
&& (__kmp_affinity_type == affinity_none ||
(i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), gtid, buf);
}
#if KMP_DEBUG
// Hidden helper thread affinity only printed for debug builds
if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
(kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
}
#endif
#if KMP_OS_WINDOWS
// On Windows* OS, the process affinity mask might have changed. If the user
// didn't request affinity and this call fails, just continue silently.
// See CQ171393.
if (__kmp_affinity_type == affinity_none) {
__kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
} else
#endif
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
void __kmp_affinity_set_place(int gtid) {
if (!KMP_AFFINITY_CAPABLE()) {
return;
}
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
"place = %d)\n",
gtid, th->th.th_new_place, th->th.th_current_place));
// Check that the new place is within this thread's partition.
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
KMP_ASSERT(th->th.th_new_place >= 0);
KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
if (th->th.th_first_place <= th->th.th_last_place) {
KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
(th->th.th_new_place <= th->th.th_last_place));
} else {
KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
(th->th.th_new_place >= th->th.th_last_place));
}
// Copy the thread mask to the kmp_info_t structure,
// and set this thread's affinity.
kmp_affin_mask_t *mask =
KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
KMP_CPU_COPY(th->th.th_affin_mask, mask);
th->th.th_current_place = th->th.th_new_place;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
__kmp_gettid(), gtid, buf);
}
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
int __kmp_aux_set_affinity(void **mask) {
int gtid;
kmp_info_t *th;
int retval;
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
gtid = __kmp_entry_gtid();
KA_TRACE(
1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf(
"kmp_set_affinity: setting affinity mask for thread %d = %s\n",
gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
} else {
unsigned proc;
int num_procs = 0;
KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
continue;
}
num_procs++;
}
if (num_procs == 0) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
#if KMP_GROUP_AFFINITY
if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
#endif /* KMP_GROUP_AFFINITY */
}
}
th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
if (retval == 0) {
KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
}
th->th.th_current_place = KMP_PLACE_UNDEFINED;
th->th.th_new_place = KMP_PLACE_UNDEFINED;
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
// Turn off 4.0 affinity for the current tread at this parallel level.
th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
return retval;
}
int __kmp_aux_get_affinity(void **mask) {
int gtid;
int retval;
kmp_info_t *th;
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
gtid = __kmp_entry_gtid();
th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
KA_TRACE(
1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
__kmp_printf(
"kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
}
}
#if !KMP_OS_WINDOWS
retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
KA_TRACE(
1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_printf(
"kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
buf);
});
return retval;
#else
(void)retval;
KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
return 0;
#endif /* KMP_OS_WINDOWS */
}
int __kmp_aux_get_affinity_max_proc() {
if (!KMP_AFFINITY_CAPABLE()) {
return 0;
}
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
}
#endif
return __kmp_xproc;
}
int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(
1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return -2;
}
KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
return 0;
}
int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(
1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return -2;
}
KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
return 0;
}
int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(
1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return 0;
}
return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
}
// Dynamic affinity settings - Affinity balanced
void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
KMP_DEBUG_ASSERT(th);
bool fine_gran = true;
int tid = th->th.th_info.ds.ds_tid;
// Do not perform balanced affinity for the hidden helper threads
if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
return;
switch (__kmp_affinity_gran) {
case KMP_HW_THREAD:
break;
case KMP_HW_CORE:
if (__kmp_nThreadsPerCore > 1) {
fine_gran = false;
}
break;
case KMP_HW_SOCKET:
if (nCoresPerPkg > 1) {
fine_gran = false;
}
break;
default:
fine_gran = false;
}
if (__kmp_topology->is_uniform()) {
int coreID;
int threadID;
// Number of hyper threads per core in HT machine
int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
// Number of cores
int ncores = __kmp_ncores;
if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
__kmp_nth_per_core = __kmp_avail_proc / nPackages;
ncores = nPackages;
}
// How many threads will be bound to each core
int chunk = nthreads / ncores;
// How many cores will have an additional thread bound to it - "big cores"
int big_cores = nthreads % ncores;
// Number of threads on the big cores
int big_nth = (chunk + 1) * big_cores;
if (tid < big_nth) {
coreID = tid / (chunk + 1);
threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
} else { // tid >= big_nth
coreID = (tid - big_cores) / chunk;
threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
}
KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set affinity operation when not capable");
kmp_affin_mask_t *mask = th->th.th_affin_mask;
KMP_CPU_ZERO(mask);
if (fine_gran) {
int osID =
__kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
KMP_CPU_SET(osID, mask);
} else {
for (int i = 0; i < __kmp_nth_per_core; i++) {
int osID;
osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
KMP_CPU_SET(osID, mask);
}
}
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), tid, buf);
}
__kmp_set_system_affinity(mask, TRUE);
} else { // Non-uniform topology
kmp_affin_mask_t *mask = th->th.th_affin_mask;
KMP_CPU_ZERO(mask);
int core_level =
__kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
__kmp_aff_depth - 1, core_level);
int nth_per_core = __kmp_affinity_max_proc_per_core(
__kmp_avail_proc, __kmp_aff_depth - 1, core_level);
// For performance gain consider the special case nthreads ==
// __kmp_avail_proc
if (nthreads == __kmp_avail_proc) {
if (fine_gran) {
int osID = __kmp_topology->at(tid).os_id;
KMP_CPU_SET(osID, mask);
} else {
int core =
__kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
for (int i = 0; i < __kmp_avail_proc; i++) {
int osID = __kmp_topology->at(i).os_id;
if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
core) {
KMP_CPU_SET(osID, mask);
}
}
}
} else if (nthreads <= ncores) {
int core = 0;
for (int i = 0; i < ncores; i++) {
// Check if this core from procarr[] is in the mask
int in_mask = 0;
for (int j = 0; j < nth_per_core; j++) {
if (procarr[i * nth_per_core + j] != -1) {
in_mask = 1;
break;
}
}
if (in_mask) {
if (tid == core) {
for (int j = 0; j < nth_per_core; j++) {
int osID = procarr[i * nth_per_core + j];
if (osID != -1) {
KMP_CPU_SET(osID, mask);
// For fine granularity it is enough to set the first available
// osID for this core
if (fine_gran) {
break;
}
}
}
break;
} else {
core++;
}
}
}
} else { // nthreads > ncores
// Array to save the number of processors at each core
int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
// Array to save the number of cores with "x" available processors;
int *ncores_with_x_procs =
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
// Array to save the number of cores with # procs from x to nth_per_core
int *ncores_with_x_to_max_procs =
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
for (int i = 0; i <= nth_per_core; i++) {
ncores_with_x_procs[i] = 0;
ncores_with_x_to_max_procs[i] = 0;
}
for (int i = 0; i < ncores; i++) {
int cnt = 0;
for (int j = 0; j < nth_per_core; j++) {
if (procarr[i * nth_per_core + j] != -1) {
cnt++;
}
}
nproc_at_core[i] = cnt;
ncores_with_x_procs[cnt]++;
}
for (int i = 0; i <= nth_per_core; i++) {
for (int j = i; j <= nth_per_core; j++) {
ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
}
}
// Max number of processors
int nproc = nth_per_core * ncores;
// An array to keep number of threads per each context
int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
for (int i = 0; i < nproc; i++) {
newarr[i] = 0;
}
int nth = nthreads;
int flag = 0;
while (nth > 0) {
for (int j = 1; j <= nth_per_core; j++) {
int cnt = ncores_with_x_to_max_procs[j];
for (int i = 0; i < ncores; i++) {
// Skip the core with 0 processors
if (nproc_at_core[i] == 0) {
continue;
}
for (int k = 0; k < nth_per_core; k++) {
if (procarr[i * nth_per_core + k] != -1) {
if (newarr[i * nth_per_core + k] == 0) {
newarr[i * nth_per_core + k] = 1;
cnt--;
nth--;
break;
} else {
if (flag != 0) {
newarr[i * nth_per_core + k]++;
cnt--;
nth--;
break;
}
}
}
}
if (cnt == 0 || nth == 0) {
break;
}
}
if (nth == 0) {
break;
}
}
flag = 1;
}
int sum = 0;
for (int i = 0; i < nproc; i++) {
sum += newarr[i];
if (sum > tid) {
if (fine_gran) {
int osID = procarr[i];
KMP_CPU_SET(osID, mask);
} else {
int coreID = i / nth_per_core;
for (int ii = 0; ii < nth_per_core; ii++) {
int osID = procarr[coreID * nth_per_core + ii];
if (osID != -1) {
KMP_CPU_SET(osID, mask);
}
}
}
break;
}
}
__kmp_free(newarr);
}
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), tid, buf);
}
__kmp_set_system_affinity(mask, TRUE);
}
}
#if KMP_OS_LINUX || KMP_OS_FREEBSD
// We don't need this entry for Windows because
// there is GetProcessAffinityMask() api
//
// The intended usage is indicated by these steps:
// 1) The user gets the current affinity mask
// 2) Then sets the affinity by calling this function
// 3) Error check the return value
// 4) Use non-OpenMP parallelization
// 5) Reset the affinity to what was stored in step 1)
#ifdef __cplusplus
extern "C"
#endif
int
kmp_set_thread_affinity_mask_initial()
// the function returns 0 on success,
// -1 if we cannot bind thread
// >0 (errno) if an error happened during binding
{
int gtid = __kmp_get_gtid();
if (gtid < 0) {
// Do not touch non-omp threads
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"non-omp thread, returning\n"));
return -1;
}
if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"affinity not initialized, returning\n"));
return -1;
}
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"set full mask for thread %d\n",
gtid));
KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
}
#endif
#endif // KMP_AFFINITY_SUPPORTED
|