1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
#define _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
#include <__config>
#include <__random/bernoulli_distribution.h>
#include <__random/gamma_distribution.h>
#include <__random/poisson_distribution.h>
#include <iosfwd>
#include <limits>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
template<class _IntType = int>
class _LIBCPP_TEMPLATE_VIS negative_binomial_distribution
{
public:
// types
typedef _IntType result_type;
class _LIBCPP_TEMPLATE_VIS param_type
{
result_type __k_;
double __p_;
public:
typedef negative_binomial_distribution distribution_type;
_LIBCPP_INLINE_VISIBILITY
explicit param_type(result_type __k = 1, double __p = 0.5)
: __k_(__k), __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY
result_type k() const {return __k_;}
_LIBCPP_INLINE_VISIBILITY
double p() const {return __p_;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator==(const param_type& __x, const param_type& __y)
{return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
#ifndef _LIBCPP_CXX03_LANG
_LIBCPP_INLINE_VISIBILITY
negative_binomial_distribution() : negative_binomial_distribution(1) {}
_LIBCPP_INLINE_VISIBILITY
explicit negative_binomial_distribution(result_type __k, double __p = 0.5)
: __p_(__k, __p) {}
#else
_LIBCPP_INLINE_VISIBILITY
explicit negative_binomial_distribution(result_type __k = 1,
double __p = 0.5)
: __p_(__k, __p) {}
#endif
_LIBCPP_INLINE_VISIBILITY
explicit negative_binomial_distribution(const param_type& __p) : __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY
void reset() {}
// generating functions
template<class _URNG>
_LIBCPP_INLINE_VISIBILITY
result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
_LIBCPP_INLINE_VISIBILITY
result_type k() const {return __p_.k();}
_LIBCPP_INLINE_VISIBILITY
double p() const {return __p_.p();}
_LIBCPP_INLINE_VISIBILITY
param_type param() const {return __p_;}
_LIBCPP_INLINE_VISIBILITY
void param(const param_type& __p) {__p_ = __p;}
_LIBCPP_INLINE_VISIBILITY
result_type min() const {return 0;}
_LIBCPP_INLINE_VISIBILITY
result_type max() const {return numeric_limits<result_type>::max();}
friend _LIBCPP_INLINE_VISIBILITY
bool operator==(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator!=(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return !(__x == __y);}
};
template <class _IntType>
template<class _URNG>
_IntType
negative_binomial_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
{
result_type __k = __pr.k();
double __p = __pr.p();
if (__k <= 21 * __p)
{
bernoulli_distribution __gen(__p);
result_type __f = 0;
result_type __s = 0;
while (__s < __k)
{
if (__gen(__urng))
++__s;
else
++__f;
}
return __f;
}
return poisson_distribution<result_type>(gamma_distribution<double>
(__k, (1-__p)/__p)(__urng))(__urng);
}
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const negative_binomial_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> __lx(__os);
typedef basic_ostream<_CharT, _Traits> _OStream;
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
_OStream::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.k() << __sp << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
negative_binomial_distribution<_IntType>& __x)
{
typedef negative_binomial_distribution<_IntType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> __lx(__is);
typedef basic_istream<_CharT, _Traits> _Istream;
__is.flags(_Istream::dec | _Istream::skipws);
result_type __k;
double __p;
__is >> __k >> __p;
if (!__is.fail())
__x.param(param_type(__k, __p));
return __is;
}
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
|