1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
#define LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
/* cxa_guard_impl.h - Implements the C++ runtime support for function local
* static guards.
* The layout of the guard object is the same across ARM and Itanium.
*
* The first "guard byte" (which is checked by the compiler) is set only upon
* the completion of cxa release.
*
* The second "init byte" does the rest of the bookkeeping. It tracks if
* initialization is complete or pending, and if there are waiting threads.
*
* If the guard variable is 64-bits and the platforms supplies a 32-bit thread
* identifier, it is used to detect recursive initialization. The thread ID of
* the thread currently performing initialization is stored in the second word.
*
* Guard Object Layout:
* ---------------------------------------------------------------------------
* | a+0: guard byte | a+1: init byte | a+2: unused ... | a+4: thread-id ... |
* ---------------------------------------------------------------------------
*
* Note that we don't do what the ABI docs suggest (put a mutex in the guard
* object which we acquire in cxa_guard_acquire and release in
* cxa_guard_release). Instead we use the init byte to imitate that behaviour,
* but without actually holding anything mutex related between aquire and
* release/abort.
*
* Access Protocol:
* For each implementation the guard byte is checked and set before accessing
* the init byte.
*
* Overall Design:
* The implementation was designed to allow each implementation to be tested
* independent of the C++ runtime or platform support.
*
*/
#include "__cxxabi_config.h"
#include "include/atomic_support.h" // from libc++
#if defined(__has_include)
# if __has_include(<sys/syscall.h>)
# include <sys/syscall.h>
# endif
# if __has_include(<unistd.h>)
# include <unistd.h>
# endif
#endif
#include <__threading_support>
#include <cstdint>
#include <cstring>
#include <limits.h>
#include <stdlib.h>
#ifndef _LIBCXXABI_HAS_NO_THREADS
# if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
# pragma comment(lib, "pthread")
# endif
#endif
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wtautological-pointer-compare"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Waddress"
#endif
// To make testing possible, this header is included from both cxa_guard.cpp
// and a number of tests.
//
// For this reason we place everything in an anonymous namespace -- even though
// we're in a header. We want the actual implementation and the tests to have
// unique definitions of the types in this header (since the tests may depend
// on function local statics).
//
// To enforce this either `BUILDING_CXA_GUARD` or `TESTING_CXA_GUARD` must be
// defined when including this file. Only `src/cxa_guard.cpp` should define
// the former.
#ifdef BUILDING_CXA_GUARD
# include "abort_message.h"
# define ABORT_WITH_MESSAGE(...) ::abort_message(__VA_ARGS__)
#elif defined(TESTING_CXA_GUARD)
# define ABORT_WITH_MESSAGE(...) ::abort()
#else
# error "Either BUILDING_CXA_GUARD or TESTING_CXA_GUARD must be defined"
#endif
#if __has_feature(thread_sanitizer)
extern "C" void __tsan_acquire(void*);
extern "C" void __tsan_release(void*);
#else
# define __tsan_acquire(addr) ((void)0)
# define __tsan_release(addr) ((void)0)
#endif
namespace __cxxabiv1 {
// Use an anonymous namespace to ensure that the tests and actual implementation
// have unique definitions of these symbols.
namespace {
//===----------------------------------------------------------------------===//
// Misc Utilities
//===----------------------------------------------------------------------===//
template <class T, T (*Init)()>
struct LazyValue {
LazyValue() : is_init(false) {}
T& get() {
if (!is_init) {
value = Init();
is_init = true;
}
return value;
}
private:
T value;
bool is_init = false;
};
template <class IntType>
class AtomicInt {
public:
using MemoryOrder = std::__libcpp_atomic_order;
explicit AtomicInt(IntType* b) : b_(b) {}
AtomicInt(AtomicInt const&) = delete;
AtomicInt& operator=(AtomicInt const&) = delete;
IntType load(MemoryOrder ord) { return std::__libcpp_atomic_load(b_, ord); }
void store(IntType val, MemoryOrder ord) { std::__libcpp_atomic_store(b_, val, ord); }
IntType exchange(IntType new_val, MemoryOrder ord) { return std::__libcpp_atomic_exchange(b_, new_val, ord); }
bool compare_exchange(IntType* expected, IntType desired, MemoryOrder ord_success, MemoryOrder ord_failure) {
return std::__libcpp_atomic_compare_exchange(b_, expected, desired, ord_success, ord_failure);
}
private:
IntType* b_;
};
//===----------------------------------------------------------------------===//
// PlatformGetThreadID
//===----------------------------------------------------------------------===//
#if defined(__APPLE__) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
uint32_t PlatformThreadID() {
static_assert(sizeof(mach_port_t) == sizeof(uint32_t), "");
return static_cast<uint32_t>(pthread_mach_thread_np(std::__libcpp_thread_get_current_id()));
}
#elif defined(SYS_gettid) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
uint32_t PlatformThreadID() {
static_assert(sizeof(pid_t) == sizeof(uint32_t), "");
return static_cast<uint32_t>(syscall(SYS_gettid));
}
#else
constexpr uint32_t (*PlatformThreadID)() = nullptr;
#endif
//===----------------------------------------------------------------------===//
// GuardByte
//===----------------------------------------------------------------------===//
static constexpr uint8_t UNSET = 0;
static constexpr uint8_t COMPLETE_BIT = (1 << 0);
static constexpr uint8_t PENDING_BIT = (1 << 1);
static constexpr uint8_t WAITING_BIT = (1 << 2);
/// Manages reads and writes to the guard byte.
struct GuardByte {
GuardByte() = delete;
GuardByte(GuardByte const&) = delete;
GuardByte& operator=(GuardByte const&) = delete;
explicit GuardByte(uint8_t* const guard_byte_address) : guard_byte(guard_byte_address) {}
public:
/// The guard byte portion of cxa_guard_acquire. Returns true if
/// initialization has already been completed.
bool acquire() {
// if guard_byte is non-zero, we have already completed initialization
// (i.e. release has been called)
return guard_byte.load(std::_AO_Acquire) != UNSET;
}
/// The guard byte portion of cxa_guard_release.
void release() { guard_byte.store(COMPLETE_BIT, std::_AO_Release); }
/// The guard byte portion of cxa_guard_abort.
void abort() {} // Nothing to do
private:
AtomicInt<uint8_t> guard_byte;
};
//===----------------------------------------------------------------------===//
// InitByte Implementations
//===----------------------------------------------------------------------===//
//
// Each initialization byte implementation supports the following methods:
//
// InitByte(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
// Construct the InitByte object, initializing our member variables
//
// bool acquire()
// Called before we start the initialization. Check if someone else has already started, and if
// not to signal our intent to start it ourselves. We determine the current status from the init
// byte, which is one of 4 possible values:
// COMPLETE: Initialization was finished by somebody else. Return true.
// PENDING: Somebody has started the initialization already, set the WAITING bit,
// then wait for the init byte to get updated with a new value.
// (PENDING|WAITING): Somebody has started the initialization already, and we're not the
// first one waiting. Wait for the init byte to get updated.
// UNSET: Initialization hasn't successfully completed, and nobody is currently
// performing the initialization. Set the PENDING bit to indicate our
// intention to start the initialization, and return false.
// The return value indicates whether initialization has already been completed.
//
// void release()
// Called after successfully completing the initialization. Update the init byte to reflect
// that, then if anybody else is waiting, wake them up.
//
// void abort()
// Called after an error is thrown during the initialization. Reset the init byte to UNSET to
// indicate that we're no longer performing the initialization, then if anybody is waiting, wake
// them up so they can try performing the initialization.
//
//===----------------------------------------------------------------------===//
// Single Threaded Implementation
//===----------------------------------------------------------------------===//
/// InitByteNoThreads - Doesn't use any inter-thread synchronization when
/// managing reads and writes to the init byte.
struct InitByteNoThreads {
InitByteNoThreads() = delete;
InitByteNoThreads(InitByteNoThreads const&) = delete;
InitByteNoThreads& operator=(InitByteNoThreads const&) = delete;
explicit InitByteNoThreads(uint8_t* _init_byte_address, uint32_t*) : init_byte_address(_init_byte_address) {}
/// The init byte portion of cxa_guard_acquire. Returns true if
/// initialization has already been completed.
bool acquire() {
if (*init_byte_address == COMPLETE_BIT)
return true;
if (*init_byte_address & PENDING_BIT)
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization");
*init_byte_address = PENDING_BIT;
return false;
}
/// The init byte portion of cxa_guard_release.
void release() { *init_byte_address = COMPLETE_BIT; }
/// The init byte portion of cxa_guard_abort.
void abort() { *init_byte_address = UNSET; }
private:
/// The address of the byte used during initialization.
uint8_t* const init_byte_address;
};
//===----------------------------------------------------------------------===//
// Global Mutex Implementation
//===----------------------------------------------------------------------===//
struct LibcppMutex;
struct LibcppCondVar;
#ifndef _LIBCXXABI_HAS_NO_THREADS
struct LibcppMutex {
LibcppMutex() = default;
LibcppMutex(LibcppMutex const&) = delete;
LibcppMutex& operator=(LibcppMutex const&) = delete;
bool lock() { return std::__libcpp_mutex_lock(&mutex); }
bool unlock() { return std::__libcpp_mutex_unlock(&mutex); }
private:
friend struct LibcppCondVar;
std::__libcpp_mutex_t mutex = _LIBCPP_MUTEX_INITIALIZER;
};
struct LibcppCondVar {
LibcppCondVar() = default;
LibcppCondVar(LibcppCondVar const&) = delete;
LibcppCondVar& operator=(LibcppCondVar const&) = delete;
bool wait(LibcppMutex& mut) { return std::__libcpp_condvar_wait(&cond, &mut.mutex); }
bool broadcast() { return std::__libcpp_condvar_broadcast(&cond); }
private:
std::__libcpp_condvar_t cond = _LIBCPP_CONDVAR_INITIALIZER;
};
#else
struct LibcppMutex {};
struct LibcppCondVar {};
#endif // !defined(_LIBCXXABI_HAS_NO_THREADS)
/// InitByteGlobalMutex - Uses a global mutex and condition variable (common to
/// all static local variables) to manage reads and writes to the init byte.
template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
uint32_t (*GetThreadID)() = PlatformThreadID>
struct InitByteGlobalMutex {
explicit InitByteGlobalMutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
: init_byte_address(_init_byte_address), thread_id_address(_thread_id_address),
has_thread_id_support(_thread_id_address != nullptr && GetThreadID != nullptr) {}
public:
/// The init byte portion of cxa_guard_acquire. Returns true if
/// initialization has already been completed.
bool acquire() {
LockGuard g("__cxa_guard_acquire");
// Check for possible recursive initialization.
if (has_thread_id_support && (*init_byte_address & PENDING_BIT)) {
if (*thread_id_address == current_thread_id.get())
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization");
}
// Wait until the pending bit is not set.
while (*init_byte_address & PENDING_BIT) {
*init_byte_address |= WAITING_BIT;
global_cond.wait(global_mutex);
}
if (*init_byte_address == COMPLETE_BIT)
return true;
if (has_thread_id_support)
*thread_id_address = current_thread_id.get();
*init_byte_address = PENDING_BIT;
return false;
}
/// The init byte portion of cxa_guard_release.
void release() {
bool has_waiting;
{
LockGuard g("__cxa_guard_release");
has_waiting = *init_byte_address & WAITING_BIT;
*init_byte_address = COMPLETE_BIT;
}
if (has_waiting) {
if (global_cond.broadcast()) {
ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_release");
}
}
}
/// The init byte portion of cxa_guard_abort.
void abort() {
bool has_waiting;
{
LockGuard g("__cxa_guard_abort");
if (has_thread_id_support)
*thread_id_address = 0;
has_waiting = *init_byte_address & WAITING_BIT;
*init_byte_address = UNSET;
}
if (has_waiting) {
if (global_cond.broadcast()) {
ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_abort");
}
}
}
private:
/// The address of the byte used during initialization.
uint8_t* const init_byte_address;
/// An optional address storing an identifier for the thread performing initialization.
/// It's used to detect recursive initialization.
uint32_t* const thread_id_address;
const bool has_thread_id_support;
LazyValue<uint32_t, GetThreadID> current_thread_id;
private:
struct LockGuard {
LockGuard() = delete;
LockGuard(LockGuard const&) = delete;
LockGuard& operator=(LockGuard const&) = delete;
explicit LockGuard(const char* calling_func) : calling_func_(calling_func) {
if (global_mutex.lock())
ABORT_WITH_MESSAGE("%s failed to acquire mutex", calling_func_);
}
~LockGuard() {
if (global_mutex.unlock())
ABORT_WITH_MESSAGE("%s failed to release mutex", calling_func_);
}
private:
const char* const calling_func_;
};
};
//===----------------------------------------------------------------------===//
// Futex Implementation
//===----------------------------------------------------------------------===//
#if defined(SYS_futex)
void PlatformFutexWait(int* addr, int expect) {
constexpr int WAIT = 0;
syscall(SYS_futex, addr, WAIT, expect, 0);
__tsan_acquire(addr);
}
void PlatformFutexWake(int* addr) {
constexpr int WAKE = 1;
__tsan_release(addr);
syscall(SYS_futex, addr, WAKE, INT_MAX);
}
#else
constexpr void (*PlatformFutexWait)(int*, int) = nullptr;
constexpr void (*PlatformFutexWake)(int*) = nullptr;
#endif
constexpr bool PlatformSupportsFutex() { return +PlatformFutexWait != nullptr; }
/// InitByteFutex - Uses a futex to manage reads and writes to the init byte.
template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
uint32_t (*GetThreadIDArg)() = PlatformThreadID>
struct InitByteFutex {
explicit InitByteFutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
: init_byte(_init_byte_address),
has_thread_id_support(_thread_id_address != nullptr && GetThreadIDArg != nullptr),
thread_id(_thread_id_address),
base_address(reinterpret_cast<int*>(/*_init_byte_address & ~0x3*/ _init_byte_address - 1)) {}
public:
/// The init byte portion of cxa_guard_acquire. Returns true if
/// initialization has already been completed.
bool acquire() {
while (true) {
uint8_t last_val = UNSET;
if (init_byte.compare_exchange(&last_val, PENDING_BIT, std::_AO_Acq_Rel, std::_AO_Acquire)) {
if (has_thread_id_support) {
thread_id.store(current_thread_id.get(), std::_AO_Relaxed);
}
return false;
}
if (last_val == COMPLETE_BIT)
return true;
if (last_val & PENDING_BIT) {
// Check for recursive initialization
if (has_thread_id_support && thread_id.load(std::_AO_Relaxed) == current_thread_id.get()) {
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization");
}
if ((last_val & WAITING_BIT) == 0) {
// This compare exchange can fail for several reasons
// (1) another thread finished the whole thing before we got here
// (2) another thread set the waiting bit we were trying to thread
// (3) another thread had an exception and failed to finish
if (!init_byte.compare_exchange(&last_val, PENDING_BIT | WAITING_BIT, std::_AO_Acq_Rel, std::_AO_Release)) {
// (1) success, via someone else's work!
if (last_val == COMPLETE_BIT)
return true;
// (3) someone else, bailed on doing the work, retry from the start!
if (last_val == UNSET)
continue;
// (2) the waiting bit got set, so we are happy to keep waiting
}
}
wait_on_initialization();
}
}
}
/// The init byte portion of cxa_guard_release.
void release() {
uint8_t old = init_byte.exchange(COMPLETE_BIT, std::_AO_Acq_Rel);
if (old & WAITING_BIT)
wake_all();
}
/// The init byte portion of cxa_guard_abort.
void abort() {
if (has_thread_id_support)
thread_id.store(0, std::_AO_Relaxed);
uint8_t old = init_byte.exchange(UNSET, std::_AO_Acq_Rel);
if (old & WAITING_BIT)
wake_all();
}
private:
/// Use the futex to wait on the current guard variable. Futex expects a
/// 32-bit 4-byte aligned address as the first argument, so we use the 4-byte
/// aligned address that encompasses the init byte (i.e. the address of the
/// raw guard object that was passed to __cxa_guard_acquire/release/abort).
void wait_on_initialization() { Wait(base_address, expected_value_for_futex(PENDING_BIT | WAITING_BIT)); }
void wake_all() { Wake(base_address); }
private:
AtomicInt<uint8_t> init_byte;
const bool has_thread_id_support;
// Unsafe to use unless has_thread_id_support
AtomicInt<uint32_t> thread_id;
LazyValue<uint32_t, GetThreadIDArg> current_thread_id;
/// the 4-byte-aligned address that encompasses the init byte (i.e. the
/// address of the raw guard object).
int* const base_address;
/// Create the expected integer value for futex `wait(int* addr, int expected)`.
/// We pass the base address as the first argument, So this function creates
/// an zero-initialized integer with `b` copied at the correct offset.
static int expected_value_for_futex(uint8_t b) {
int dest_val = 0;
std::memcpy(reinterpret_cast<char*>(&dest_val) + 1, &b, 1);
return dest_val;
}
static_assert(Wait != nullptr && Wake != nullptr, "");
};
//===----------------------------------------------------------------------===//
// GuardObject
//===----------------------------------------------------------------------===//
enum class AcquireResult {
INIT_IS_DONE,
INIT_IS_PENDING,
};
constexpr AcquireResult INIT_IS_DONE = AcquireResult::INIT_IS_DONE;
constexpr AcquireResult INIT_IS_PENDING = AcquireResult::INIT_IS_PENDING;
/// Co-ordinates between GuardByte and InitByte.
template <class InitByteT>
struct GuardObject {
GuardObject() = delete;
GuardObject(GuardObject const&) = delete;
GuardObject& operator=(GuardObject const&) = delete;
private:
GuardByte guard_byte;
InitByteT init_byte;
public:
/// ARM Constructor
explicit GuardObject(uint32_t* raw_guard_object)
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, nullptr) {}
/// Itanium Constructor
explicit GuardObject(uint64_t* raw_guard_object)
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, reinterpret_cast<uint32_t*>(raw_guard_object) + 1) {
}
/// Implements __cxa_guard_acquire.
AcquireResult cxa_guard_acquire() {
// Use short-circuit evaluation to avoid calling init_byte.acquire when
// guard_byte.acquire returns true. (i.e. don't call it when we know from
// the guard byte that initialization has already been completed)
if (guard_byte.acquire() || init_byte.acquire())
return INIT_IS_DONE;
return INIT_IS_PENDING;
}
/// Implements __cxa_guard_release.
void cxa_guard_release() {
// Update guard byte first, so if somebody is woken up by init_byte.release
// and comes all the way back around to __cxa_guard_acquire again, they see
// it as having completed initialization.
guard_byte.release();
init_byte.release();
}
/// Implements __cxa_guard_abort.
void cxa_guard_abort() {
guard_byte.abort();
init_byte.abort();
}
};
//===----------------------------------------------------------------------===//
// Convenience Classes
//===----------------------------------------------------------------------===//
/// NoThreadsGuard - Manages initialization without performing any inter-thread
/// synchronization.
using NoThreadsGuard = GuardObject<InitByteNoThreads>;
/// GlobalMutexGuard - Manages initialization using a global mutex and
/// condition variable.
template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
uint32_t (*GetThreadID)() = PlatformThreadID>
using GlobalMutexGuard = GuardObject<InitByteGlobalMutex<Mutex, CondVar, global_mutex, global_cond, GetThreadID>>;
/// FutexGuard - Manages initialization using atomics and the futex syscall for
/// waiting and waking.
template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
uint32_t (*GetThreadIDArg)() = PlatformThreadID>
using FutexGuard = GuardObject<InitByteFutex<Wait, Wake, GetThreadIDArg>>;
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
template <class T>
struct GlobalStatic {
static T instance;
};
template <class T>
_LIBCPP_CONSTINIT T GlobalStatic<T>::instance = {};
enum class Implementation { NoThreads, GlobalMutex, Futex };
template <Implementation Impl>
struct SelectImplementation;
template <>
struct SelectImplementation<Implementation::NoThreads> {
using type = NoThreadsGuard;
};
template <>
struct SelectImplementation<Implementation::GlobalMutex> {
using type = GlobalMutexGuard<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
GlobalStatic<LibcppCondVar>::instance, PlatformThreadID>;
};
template <>
struct SelectImplementation<Implementation::Futex> {
using type = FutexGuard<PlatformFutexWait, PlatformFutexWake, PlatformThreadID>;
};
// TODO(EricWF): We should prefer the futex implementation when available. But
// it should be done in a separate step from adding the implementation.
constexpr Implementation CurrentImplementation =
#if defined(_LIBCXXABI_HAS_NO_THREADS)
Implementation::NoThreads;
#elif defined(_LIBCXXABI_USE_FUTEX)
Implementation::Futex;
#else
Implementation::GlobalMutex;
#endif
static_assert(CurrentImplementation != Implementation::Futex || PlatformSupportsFutex(),
"Futex selected but not supported");
using SelectedImplementation = SelectImplementation<CurrentImplementation>::type;
} // end namespace
} // end namespace __cxxabiv1
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
#endif // LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
|