1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Copyright 2018 Ulf Adams
// Copyright (c) Microsoft Corporation. All rights reserved.
// Boost Software License - Version 1.0 - August 17th, 2003
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Avoid formatting to keep the changes with the original code minimal.
// clang-format off
#include <__assert>
#include <__config>
#include <charconv>
#include "include/ryu/common.h"
#include "include/ryu/d2fixed.h"
#include "include/ryu/d2s_intrinsics.h"
#include "include/ryu/digit_table.h"
#include "include/ryu/f2s.h"
#include "include/ryu/ryu.h"
_LIBCPP_BEGIN_NAMESPACE_STD
inline constexpr int __FLOAT_MANTISSA_BITS = 23;
inline constexpr int __FLOAT_EXPONENT_BITS = 8;
inline constexpr int __FLOAT_BIAS = 127;
inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
570899077082383953u, 456719261665907162u, 365375409332725730u
};
inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
1292469707114105741u, 1615587133892632177u, 2019483917365790221u
};
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
uint32_t __count = 0;
for (;;) {
_LIBCPP_ASSERT(__value != 0, "");
const uint32_t __q = __value / 5;
const uint32_t __r = __value % 5;
if (__r != 0) {
break;
}
__value = __q;
++__count;
}
return __count;
}
// Returns true if __value is divisible by 5^__p.
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
return __pow5Factor(__value) >= __p;
}
// Returns true if __value is divisible by 2^__p.
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
_LIBCPP_ASSERT(__value != 0, "");
_LIBCPP_ASSERT(__p < 32, "");
// __builtin_ctz doesn't appear to be faster here.
return (__value & ((1u << __p) - 1)) == 0;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
_LIBCPP_ASSERT(__shift > 32, "");
// The casts here help MSVC to avoid calls to the __allmul library
// function.
const uint32_t __factorLo = static_cast<uint32_t>(__factor);
const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
#ifndef _LIBCPP_64_BIT
// On 32-bit platforms we can avoid a 64-bit shift-right since we only
// need the upper 32 bits of the result and the shift value is > 32.
const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
__bits1Lo += __bits0Hi;
__bits1Hi += (__bits1Lo < __bits0Hi);
const int32_t __s = __shift - 32;
return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
const uint64_t __sum = (__bits0 >> 32) + __bits1;
const uint64_t __shiftedSum = __sum >> (__shift - 32);
_LIBCPP_ASSERT(__shiftedSum <= UINT32_MAX, "");
return static_cast<uint32_t>(__shiftedSum);
#endif // ^^^ 64-bit ^^^
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
}
// A floating decimal representing m * 10^e.
struct __floating_decimal_32 {
uint32_t __mantissa;
int32_t __exponent;
};
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
int32_t __e2;
uint32_t __m2;
if (__ieeeExponent == 0) {
// We subtract 2 so that the bounds computation has 2 additional bits.
__e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
__m2 = __ieeeMantissa;
} else {
__e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
__m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
}
const bool __even = (__m2 & 1) == 0;
const bool __acceptBounds = __even;
// Step 2: Determine the interval of valid decimal representations.
const uint32_t __mv = 4 * __m2;
const uint32_t __mp = 4 * __m2 + 2;
// Implicit bool -> int conversion. True is 1, false is 0.
const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
uint32_t __vr, __vp, __vm;
int32_t __e10;
bool __vmIsTrailingZeros = false;
bool __vrIsTrailingZeros = false;
uint8_t __lastRemovedDigit = 0;
if (__e2 >= 0) {
const uint32_t __q = __log10Pow2(__e2);
__e10 = static_cast<int32_t>(__q);
const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
__vr = __mulPow5InvDivPow2(__mv, __q, __i);
__vp = __mulPow5InvDivPow2(__mp, __q, __i);
__vm = __mulPow5InvDivPow2(__mm, __q, __i);
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
// We need to know one removed digit even if we are not going to loop below. We could use
// __q = X - 1 above, except that would require 33 bits for the result, and we've found that
// 32-bit arithmetic is faster even on 64-bit machines.
const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
-__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
}
if (__q <= 9) {
// The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
// Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
if (__mv % 5 == 0) {
__vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
} else if (__acceptBounds) {
__vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
} else {
__vp -= __multipleOfPowerOf5(__mp, __q);
}
}
} else {
const uint32_t __q = __log10Pow5(-__e2);
__e10 = static_cast<int32_t>(__q) + __e2;
const int32_t __i = -__e2 - static_cast<int32_t>(__q);
const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
int32_t __j = static_cast<int32_t>(__q) - __k;
__vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
__vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
__vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
__j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
}
if (__q <= 1) {
// {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
// __mv = 4 * __m2, so it always has at least two trailing 0 bits.
__vrIsTrailingZeros = true;
if (__acceptBounds) {
// __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
__vmIsTrailingZeros = __mmShift == 1;
} else {
// __mp = __mv + 2, so it always has at least one trailing 0 bit.
--__vp;
}
} else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
__vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
}
}
// Step 4: Find the shortest decimal representation in the interval of valid representations.
int32_t __removed = 0;
uint32_t _Output;
if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
// General case, which happens rarely (~4.0%).
while (__vp / 10 > __vm / 10) {
#ifdef __clang__ // TRANSITION, LLVM-23106
__vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
#else
__vmIsTrailingZeros &= __vm % 10 == 0;
#endif
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
__vr /= 10;
__vp /= 10;
__vm /= 10;
++__removed;
}
if (__vmIsTrailingZeros) {
while (__vm % 10 == 0) {
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
__vr /= 10;
__vp /= 10;
__vm /= 10;
++__removed;
}
}
if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
// Round even if the exact number is .....50..0.
__lastRemovedDigit = 4;
}
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
_Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
} else {
// Specialized for the common case (~96.0%). Percentages below are relative to this.
// Loop iterations below (approximately):
// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
while (__vp / 10 > __vm / 10) {
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
__vr /= 10;
__vp /= 10;
__vm /= 10;
++__removed;
}
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
_Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
}
const int32_t __exp = __e10 + __removed;
__floating_decimal_32 __fd;
__fd.__exponent = __exp;
__fd.__mantissa = _Output;
return __fd;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
const uint32_t _Mantissa2, const int32_t _Exponent2) {
// Print the integer _Mantissa2 * 2^_Exponent2 exactly.
// For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
// In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
// the zeros.) The dense range of exactly representable integers has negative or zero exponents
// (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
// every digit is necessary to uniquely identify the value, so Ryu must print them all.
// Positive exponents are the non-dense range of exactly representable integers.
// This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
// Performance note: Long division appears to be faster than losslessly widening float to double and calling
// __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
_LIBCPP_ASSERT(_Exponent2 > 0, "");
_LIBCPP_ASSERT(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
// Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
// (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
// 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
// We use a little-endian representation, visualized like this:
// << left shift <<
// most significant
// _Data[3] _Data[2] _Data[1] _Data[0]
// least significant
// >> right shift >>
constexpr uint32_t _Data_size = 4;
uint32_t _Data[_Data_size]{};
// _Maxidx is the index of the most significant nonzero element.
uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
_LIBCPP_ASSERT(_Maxidx < _Data_size, "");
const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
_Data[_Maxidx] = _Mantissa2 << _Bit_shift;
} else { // _Mantissa2's 24 bits cross an element boundary
_Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
_Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
}
// If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
// by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
uint32_t _Blocks[4];
int32_t _Filled_blocks = 0;
// From left to right, we're going to print:
// _Data[0] will be [1, 10] digits.
// Then if _Filled_blocks > 0:
// _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
if (_Maxidx != 0) { // If the integer is actually large, perform long division.
// Otherwise, skip to printing _Data[0].
for (;;) {
// Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
const uint32_t _Most_significant_elem = _Data[_Maxidx];
const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
_Data[_Maxidx] = _Initial_quotient;
uint64_t _Remainder = _Initial_remainder;
// Process less significant elements.
uint32_t _Idx = _Maxidx;
do {
--_Idx; // Initially, _Remainder is at most 10^9 - 1.
// Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
_Remainder = (_Remainder << 32) | _Data[_Idx];
// floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
// _Remainder is at most 10^9 - 1 again.
// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
_Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
_Data[_Idx] = _Quotient;
} while (_Idx != 0);
// Store a 0-filled 9-digit block.
_Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
if (_Initial_quotient == 0) { // Is the large integer shrinking?
--_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
if (_Maxidx == 0) {
break; // We've finished long division. Now we need to print _Data[0].
}
}
}
}
_LIBCPP_ASSERT(_Data[0] != 0, "");
for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
_LIBCPP_ASSERT(_Data[_Idx] == 0, "");
}
const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
return { _Last, errc::value_too_large };
}
char* _Result = _First;
// Print _Data[0]. While it's up to 10 digits,
// which is more than Ryu generates, the code below can handle this.
__append_n_digits(_Data_olength, _Data[0], _Result);
_Result += _Data_olength;
// Print 0-filled 9-digit blocks.
for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
__append_nine_digits(_Blocks[_Idx], _Result);
_Result += 9;
}
return { _Result, errc{} };
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
// Step 5: Print the decimal representation.
uint32_t _Output = __v.__mantissa;
int32_t _Ryu_exponent = __v.__exponent;
const uint32_t __olength = __decimalLength9(_Output);
int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
if (_Fmt == chars_format{}) {
int32_t _Lower;
int32_t _Upper;
if (__olength == 1) {
// Value | Fixed | Scientific
// 1e-3 | "0.001" | "1e-03"
// 1e4 | "10000" | "1e+04"
_Lower = -3;
_Upper = 4;
} else {
// Value | Fixed | Scientific
// 1234e-7 | "0.0001234" | "1.234e-04"
// 1234e5 | "123400000" | "1.234e+08"
_Lower = -static_cast<int32_t>(__olength + 3);
_Upper = 5;
}
if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
_Fmt = chars_format::fixed;
} else {
_Fmt = chars_format::scientific;
}
} else if (_Fmt == chars_format::general) {
// C11 7.21.6.1 "The fprintf function"/8:
// "Let P equal [...] 6 if the precision is omitted [...].
// Then, if a conversion with style E would have an exponent of X:
// - if P > X >= -4, the conversion is with style f [...].
// - otherwise, the conversion is with style e [...]."
if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
_Fmt = chars_format::fixed;
} else {
_Fmt = chars_format::scientific;
}
}
if (_Fmt == chars_format::fixed) {
// Example: _Output == 1729, __olength == 4
// _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
// --------------|----------|---------------|----------------------|---------------------------------------
// 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
// 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
// --------------|----------|---------------|----------------------|---------------------------------------
// 0 | 1729 | 4 | _Whole_digits | Unified length cases.
// --------------|----------|---------------|----------------------|---------------------------------------
// -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
// -2 | 17.29 | 2 | | __olength == 1, but no additional
// -3 | 1.729 | 1 | | code is needed to avoid it.
// --------------|----------|---------------|----------------------|---------------------------------------
// -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
// -5 | 0.01729 | -1 | | "If a decimal-point character appears,
// -6 | 0.001729 | -2 | | at least one digit appears before it."
const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
uint32_t _Total_fixed_length;
if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
_Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
if (_Output == 1) {
// Rounding can affect the number of digits.
// For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
// We can use a lookup table to detect this and adjust the total length.
static constexpr uint8_t _Adjustment[39] = {
0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
_Total_fixed_length -= _Adjustment[_Ryu_exponent];
// _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
}
} else if (_Whole_digits > 0) { // case "17.29"
_Total_fixed_length = __olength + 1;
} else { // case "0.001729"
_Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
}
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
return { _Last, errc::value_too_large };
}
char* _Mid;
if (_Ryu_exponent > 0) { // case "172900"
bool _Can_use_ryu;
if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
_Can_use_ryu = false;
} else {
// Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
// __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
// 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
// _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
// with 9 decimal digits, which is float's round-trip limit.)
// _Ryu_exponent is [1, 10].
// Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
// This adds up to [3, 62], which is well below float's maximum binary exponent 127.
// Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
// If that product would exceed 24 bits, then X can't be exactly represented as a float.
// (That's not a problem for round-tripping, because X is close enough to the original float,
// but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
// If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
// need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
// same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
// (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
static constexpr uint32_t _Max_shifted_mantissa[11] = {
16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
unsigned long _Trailing_zero_bits;
(void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
_Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
}
if (!_Can_use_ryu) {
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
// Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
}
// _Can_use_ryu
// Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
_Mid = _First + __olength;
} else { // cases "1729", "17.29", and "0.001729"
// Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
_Mid = _First + _Total_fixed_length;
}
while (_Output >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = _Output - 10000 * (_Output / 10000);
#else
const uint32_t __c = _Output % 10000;
#endif
_Output /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
}
if (_Output >= 100) {
const uint32_t __c = (_Output % 100) << 1;
_Output /= 100;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
}
if (_Output >= 10) {
const uint32_t __c = _Output << 1;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
} else {
*--_Mid = static_cast<char>('0' + _Output);
}
if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
// Performance note: it might be more efficient to do this immediately after setting _Mid.
_VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
} else if (_Ryu_exponent == 0) { // case "1729"
// Done!
} else if (_Whole_digits > 0) { // case "17.29"
// Performance note: moving digits might not be optimal.
_VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
_First[_Whole_digits] = '.';
} else { // case "0.001729"
// Performance note: a larger memset() followed by overwriting '.' might be more efficient.
_First[0] = '0';
_First[1] = '.';
_VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
}
return { _First + _Total_fixed_length, errc{} };
}
const uint32_t _Total_scientific_length =
__olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
return { _Last, errc::value_too_large };
}
char* const __result = _First;
// Print the decimal digits.
uint32_t __i = 0;
while (_Output >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = _Output - 10000 * (_Output / 10000);
#else
const uint32_t __c = _Output % 10000;
#endif
_Output /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
_VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
__i += 4;
}
if (_Output >= 100) {
const uint32_t __c = (_Output % 100) << 1;
_Output /= 100;
_VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
__i += 2;
}
if (_Output >= 10) {
const uint32_t __c = _Output << 1;
// We can't use memcpy here: the decimal dot goes between these two digits.
__result[2] = __DIGIT_TABLE[__c + 1];
__result[0] = __DIGIT_TABLE[__c];
} else {
__result[0] = static_cast<char>('0' + _Output);
}
// Print decimal point if needed.
uint32_t __index;
if (__olength > 1) {
__result[1] = '.';
__index = __olength + 1;
} else {
__index = 1;
}
// Print the exponent.
__result[__index++] = 'e';
if (_Scientific_exponent < 0) {
__result[__index++] = '-';
_Scientific_exponent = -_Scientific_exponent;
} else {
__result[__index++] = '+';
}
_VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
__index += 2;
return { _First + _Total_scientific_length, errc{} };
}
[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
const chars_format _Fmt) {
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint32_t __bits = __float_to_bits(__f);
// Case distinction; exit early for the easy cases.
if (__bits == 0) {
if (_Fmt == chars_format::scientific) {
if (_Last - _First < 5) {
return { _Last, errc::value_too_large };
}
_VSTD::memcpy(_First, "0e+00", 5);
return { _First + 5, errc{} };
}
// Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First = '0';
return { _First + 1, errc{} };
}
// Decode __bits into mantissa and exponent.
const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
// When _Fmt == chars_format::fixed and the floating-point number is a large integer,
// it's faster to skip Ryu and immediately print the integer exactly.
if (_Fmt == chars_format::fixed) {
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
// Normal values are equal to _Mantissa2 * 2^_Exponent2.
// (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
if (_Exponent2 > 0) {
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
}
}
const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
}
_LIBCPP_END_NAMESPACE_STD
// clang-format on
|