1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Copyright 2018 Ulf Adams
// Copyright (c) Microsoft Corporation. All rights reserved.
// Boost Software License - Version 1.0 - August 17th, 2003
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Avoid formatting to keep the changes with the original code minimal.
// clang-format off
#include "__config"
#include "charconv"
#include "include/ryu/common.h"
#include "include/ryu/d2fixed.h"
#include "include/ryu/d2s.h"
#include "include/ryu/d2s_full_table.h"
#include "include/ryu/d2s_intrinsics.h"
#include "include/ryu/digit_table.h"
#include "include/ryu/ryu.h"
_LIBCPP_BEGIN_NAMESPACE_STD
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
// Multiplication:
// The 64-bit factor is variable and passed in, the 128-bit factor comes
// from a lookup table. We know that the 64-bit factor only has 55
// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
// factor only has 124 significant bits (i.e., the 4 topmost bits are
// zeros).
// Shift:
// In principle, the multiplication result requires 55 + 124 = 179 bits to
// represent. However, we then shift this value to the right by __j, which is
// at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
// bits. This means that we only need the topmost 64 significant bits of
// the 64x128-bit multiplication.
//
// There are several ways to do this:
// 1. Best case: the compiler exposes a 128-bit type.
// We perform two 64x64-bit multiplications, add the higher 64 bits of the
// lower result to the higher result, and shift by __j - 64 bits.
//
// We explicitly cast from 64-bit to 128-bit, so the compiler can tell
// that these are only 64-bit inputs, and can map these to the best
// possible sequence of assembly instructions.
// x64 machines happen to have matching assembly instructions for
// 64x64-bit multiplications and 128-bit shifts.
//
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
// instructions mentioned in 1.
//
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
// the result, i.e., we have to use plain C.
// Our inputs are less than the full width, so we have three options:
// a. Ignore this fact and just implement the intrinsics manually.
// b. Split both into 31-bit pieces, which guarantees no internal overflow,
// but requires extra work upfront (unless we change the lookup table).
// c. Split only the first factor into 31-bit pieces, which also guarantees
// no internal overflow, but requires extra work since the intermediate
// results are not perfectly aligned.
#ifdef _LIBCPP_INTRINSIC128
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
// __m is maximum 55 bits
uint64_t __high1; // 128
const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
uint64_t __high0; // 64
(void) __ryu_umul128(__m, __mul[0], &__high0); // 0
const uint64_t __sum = __high0 + __low1;
if (__sum < __high0) {
++__high1; // overflow into __high1
}
return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64));
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j,
uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) {
*__vp = __mulShift(4 * __m + 2, __mul, __j);
*__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j);
return __mulShift(4 * __m, __mul, __j);
}
#else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j,
uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761
__m <<= 1;
// __m is maximum 55 bits
uint64_t __tmp;
const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp);
uint64_t __hi;
const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi);
__hi += __mid < __tmp; // overflow into __hi
const uint64_t __lo2 = __lo + __mul[0];
const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo);
const uint64_t __hi2 = __hi + (__mid2 < __mid);
*__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1));
if (__mmShift == 1) {
const uint64_t __lo3 = __lo - __mul[0];
const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo);
const uint64_t __hi3 = __hi - (__mid3 > __mid);
*__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1));
} else {
const uint64_t __lo3 = __lo + __lo;
const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo);
const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid);
const uint64_t __lo4 = __lo3 - __mul[0];
const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3);
const uint64_t __hi4 = __hi3 - (__mid4 > __mid3);
*__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64));
}
return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1));
}
#endif // ^^^ intrinsics unavailable ^^^
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) {
// This is slightly faster than a loop.
// The average output length is 16.38 digits, so we check high-to-low.
// Function precondition: __v is not an 18, 19, or 20-digit number.
// (17 digits are sufficient for round-tripping.)
_LIBCPP_ASSERT(__v < 100000000000000000u, "");
if (__v >= 10000000000000000u) { return 17; }
if (__v >= 1000000000000000u) { return 16; }
if (__v >= 100000000000000u) { return 15; }
if (__v >= 10000000000000u) { return 14; }
if (__v >= 1000000000000u) { return 13; }
if (__v >= 100000000000u) { return 12; }
if (__v >= 10000000000u) { return 11; }
if (__v >= 1000000000u) { return 10; }
if (__v >= 100000000u) { return 9; }
if (__v >= 10000000u) { return 8; }
if (__v >= 1000000u) { return 7; }
if (__v >= 100000u) { return 6; }
if (__v >= 10000u) { return 5; }
if (__v >= 1000u) { return 4; }
if (__v >= 100u) { return 3; }
if (__v >= 10u) { return 2; }
return 1;
}
// A floating decimal representing m * 10^e.
struct __floating_decimal_64 {
uint64_t __mantissa;
int32_t __exponent;
};
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) {
int32_t __e2;
uint64_t __m2;
if (__ieeeExponent == 0) {
// We subtract 2 so that the bounds computation has 2 additional bits.
__e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
__m2 = __ieeeMantissa;
} else {
__e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
__m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
}
const bool __even = (__m2 & 1) == 0;
const bool __acceptBounds = __even;
// Step 2: Determine the interval of valid decimal representations.
const uint64_t __mv = 4 * __m2;
// Implicit bool -> int conversion. True is 1, false is 0.
const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
// We would compute __mp and __mm like this:
// uint64_t __mp = 4 * __m2 + 2;
// uint64_t __mm = __mv - 1 - __mmShift;
// Step 3: Convert to a decimal power base using 128-bit arithmetic.
uint64_t __vr, __vp, __vm;
int32_t __e10;
bool __vmIsTrailingZeros = false;
bool __vrIsTrailingZeros = false;
if (__e2 >= 0) {
// I tried special-casing __q == 0, but there was no effect on performance.
// This expression is slightly faster than max(0, __log10Pow2(__e2) - 1).
const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3);
__e10 = static_cast<int32_t>(__q);
const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
__vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift);
if (__q <= 21) {
// This should use __q <= 22, but I think 21 is also safe. Smaller values
// may still be safe, but it's more difficult to reason about them.
// Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv));
if (__mvMod5 == 0) {
__vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
} else if (__acceptBounds) {
// Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q
// <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q
// <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q.
__vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q);
} else {
// Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q.
__vp -= __multipleOfPowerOf5(__mv + 2, __q);
}
}
} else {
// This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1).
const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1);
__e10 = static_cast<int32_t>(__q) + __e2;
const int32_t __i = -__e2 - static_cast<int32_t>(__q);
const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT;
const int32_t __j = static_cast<int32_t>(__q) - __k;
__vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift);
if (__q <= 1) {
// {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
// __mv = 4 * __m2, so it always has at least two trailing 0 bits.
__vrIsTrailingZeros = true;
if (__acceptBounds) {
// __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
__vmIsTrailingZeros = __mmShift == 1;
} else {
// __mp = __mv + 2, so it always has at least one trailing 0 bit.
--__vp;
}
} else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here.
// We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1
// <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1
// <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q)
// <=> (__mv & ((1 << (__q - 1)) - 1)) == 0
// We also need to make sure that the left shift does not overflow.
__vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
}
}
// Step 4: Find the shortest decimal representation in the interval of valid representations.
int32_t __removed = 0;
uint8_t __lastRemovedDigit = 0;
uint64_t _Output;
// On average, we remove ~2 digits.
if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
// General case, which happens rarely (~0.7%).
for (;;) {
const uint64_t __vpDiv10 = __div10(__vp);
const uint64_t __vmDiv10 = __div10(__vm);
if (__vpDiv10 <= __vmDiv10) {
break;
}
const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
const uint64_t __vrDiv10 = __div10(__vr);
const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
__vmIsTrailingZeros &= __vmMod10 == 0;
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
__lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
__vr = __vrDiv10;
__vp = __vpDiv10;
__vm = __vmDiv10;
++__removed;
}
if (__vmIsTrailingZeros) {
for (;;) {
const uint64_t __vmDiv10 = __div10(__vm);
const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
if (__vmMod10 != 0) {
break;
}
const uint64_t __vpDiv10 = __div10(__vp);
const uint64_t __vrDiv10 = __div10(__vr);
const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
__lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
__vr = __vrDiv10;
__vp = __vpDiv10;
__vm = __vmDiv10;
++__removed;
}
}
if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
// Round even if the exact number is .....50..0.
__lastRemovedDigit = 4;
}
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
_Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
} else {
// Specialized for the common case (~99.3%). Percentages below are relative to this.
bool __roundUp = false;
const uint64_t __vpDiv100 = __div100(__vp);
const uint64_t __vmDiv100 = __div100(__vm);
if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
const uint64_t __vrDiv100 = __div100(__vr);
const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100);
__roundUp = __vrMod100 >= 50;
__vr = __vrDiv100;
__vp = __vpDiv100;
__vm = __vmDiv100;
__removed += 2;
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for (;;) {
const uint64_t __vpDiv10 = __div10(__vp);
const uint64_t __vmDiv10 = __div10(__vm);
if (__vpDiv10 <= __vmDiv10) {
break;
}
const uint64_t __vrDiv10 = __div10(__vr);
const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
__roundUp = __vrMod10 >= 5;
__vr = __vrDiv10;
__vp = __vpDiv10;
__vm = __vmDiv10;
++__removed;
}
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
_Output = __vr + (__vr == __vm || __roundUp);
}
const int32_t __exp = __e10 + __removed;
__floating_decimal_64 __fd;
__fd.__exponent = __exp;
__fd.__mantissa = _Output;
return __fd;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v,
chars_format _Fmt, const double __f) {
// Step 5: Print the decimal representation.
uint64_t _Output = __v.__mantissa;
int32_t _Ryu_exponent = __v.__exponent;
const uint32_t __olength = __decimalLength17(_Output);
int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
if (_Fmt == chars_format{}) {
int32_t _Lower;
int32_t _Upper;
if (__olength == 1) {
// Value | Fixed | Scientific
// 1e-3 | "0.001" | "1e-03"
// 1e4 | "10000" | "1e+04"
_Lower = -3;
_Upper = 4;
} else {
// Value | Fixed | Scientific
// 1234e-7 | "0.0001234" | "1.234e-04"
// 1234e5 | "123400000" | "1.234e+08"
_Lower = -static_cast<int32_t>(__olength + 3);
_Upper = 5;
}
if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
_Fmt = chars_format::fixed;
} else {
_Fmt = chars_format::scientific;
}
} else if (_Fmt == chars_format::general) {
// C11 7.21.6.1 "The fprintf function"/8:
// "Let P equal [...] 6 if the precision is omitted [...].
// Then, if a conversion with style E would have an exponent of X:
// - if P > X >= -4, the conversion is with style f [...].
// - otherwise, the conversion is with style e [...]."
if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
_Fmt = chars_format::fixed;
} else {
_Fmt = chars_format::scientific;
}
}
if (_Fmt == chars_format::fixed) {
// Example: _Output == 1729, __olength == 4
// _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
// --------------|----------|---------------|----------------------|---------------------------------------
// 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
// 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
// --------------|----------|---------------|----------------------|---------------------------------------
// 0 | 1729 | 4 | _Whole_digits | Unified length cases.
// --------------|----------|---------------|----------------------|---------------------------------------
// -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
// -2 | 17.29 | 2 | | __olength == 1, but no additional
// -3 | 1.729 | 1 | | code is needed to avoid it.
// --------------|----------|---------------|----------------------|---------------------------------------
// -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
// -5 | 0.01729 | -1 | | "If a decimal-point character appears,
// -6 | 0.001729 | -2 | | at least one digit appears before it."
const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
uint32_t _Total_fixed_length;
if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
_Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
if (_Output == 1) {
// Rounding can affect the number of digits.
// For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24.
// We can use a lookup table to detect this and adjust the total length.
static constexpr uint8_t _Adjustment[309] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,
1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1,
1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,
1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,
0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1,
1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0,
0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 };
_Total_fixed_length -= _Adjustment[_Ryu_exponent];
// _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
}
} else if (_Whole_digits > 0) { // case "17.29"
_Total_fixed_length = __olength + 1;
} else { // case "0.001729"
_Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
}
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
return { _Last, errc::value_too_large };
}
char* _Mid;
if (_Ryu_exponent > 0) { // case "172900"
bool _Can_use_ryu;
if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double.
_Can_use_ryu = false;
} else {
// Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
// __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
// 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
// _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2
// with 17 decimal digits, which is double's round-trip limit.)
// _Ryu_exponent is [1, 22].
// Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5).
// This adds up to [3, 130], which is well below double's maximum binary exponent 1023.
// Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
// If that product would exceed 53 bits, then X can't be exactly represented as a double.
// (That's not a problem for round-tripping, because X is close enough to the original double,
// but X isn't mathematically equal to the original double.) This requires a high-precision fallback.
// If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't
// need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the
// same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled).
// (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22
static constexpr uint64_t _Max_shifted_mantissa[23] = {
9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u,
2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u,
36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u };
unsigned long _Trailing_zero_bits;
#ifdef _LIBCPP_HAS_BITSCAN64
(void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
#else // ^^^ 64-bit ^^^ / vvv 32-bit vvv
const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa);
if (_Low_mantissa != 0) {
(void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa);
} else {
const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here
(void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa);
_Trailing_zero_bits += 32;
}
#endif // ^^^ 32-bit ^^^
const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
_Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
}
if (!_Can_use_ryu) {
// Print the integer exactly.
// Performance note: This will redundantly perform bounds checking.
// Performance note: This will redundantly decompose the IEEE representation.
return __d2fixed_buffered_n(_First, _Last, __f, 0);
}
// _Can_use_ryu
// Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
_Mid = _First + __olength;
} else { // cases "1729", "17.29", and "0.001729"
// Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
_Mid = _First + _Total_fixed_length;
}
// We prefer 32-bit operations, even on 64-bit platforms.
// We have at most 17 digits, and uint32_t can store 9 digits.
// If _Output doesn't fit into uint32_t, we cut off 8 digits,
// so the rest will fit into uint32_t.
if ((_Output >> 32) != 0) {
// Expensive 64-bit division.
const uint64_t __q = __div1e8(_Output);
uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q);
_Output = __q;
const uint32_t __c = __output2 % 10000;
__output2 /= 10000;
const uint32_t __d = __output2 % 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
const uint32_t __d0 = (__d % 100) << 1;
const uint32_t __d1 = (__d / 100) << 1;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2);
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2);
}
uint32_t __output2 = static_cast<uint32_t>(_Output);
while (__output2 >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
#else
const uint32_t __c = __output2 % 10000;
#endif
__output2 /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
}
if (__output2 >= 100) {
const uint32_t __c = (__output2 % 100) << 1;
__output2 /= 100;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
}
if (__output2 >= 10) {
const uint32_t __c = __output2 << 1;
_VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
} else {
*--_Mid = static_cast<char>('0' + __output2);
}
if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
// Performance note: it might be more efficient to do this immediately after setting _Mid.
_VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
} else if (_Ryu_exponent == 0) { // case "1729"
// Done!
} else if (_Whole_digits > 0) { // case "17.29"
// Performance note: moving digits might not be optimal.
_VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
_First[_Whole_digits] = '.';
} else { // case "0.001729"
// Performance note: a larger memset() followed by overwriting '.' might be more efficient.
_First[0] = '0';
_First[1] = '.';
_VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
}
return { _First + _Total_fixed_length, errc{} };
}
const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point
+ (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent
if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
return { _Last, errc::value_too_large };
}
char* const __result = _First;
// Print the decimal digits.
uint32_t __i = 0;
// We prefer 32-bit operations, even on 64-bit platforms.
// We have at most 17 digits, and uint32_t can store 9 digits.
// If _Output doesn't fit into uint32_t, we cut off 8 digits,
// so the rest will fit into uint32_t.
if ((_Output >> 32) != 0) {
// Expensive 64-bit division.
const uint64_t __q = __div1e8(_Output);
uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q);
_Output = __q;
const uint32_t __c = __output2 % 10000;
__output2 /= 10000;
const uint32_t __d = __output2 % 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
const uint32_t __d0 = (__d % 100) << 1;
const uint32_t __d1 = (__d / 100) << 1;
_VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
_VSTD::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2);
_VSTD::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2);
__i += 8;
}
uint32_t __output2 = static_cast<uint32_t>(_Output);
while (__output2 >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
#else
const uint32_t __c = __output2 % 10000;
#endif
__output2 /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
_VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
_VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
__i += 4;
}
if (__output2 >= 100) {
const uint32_t __c = (__output2 % 100) << 1;
__output2 /= 100;
_VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
__i += 2;
}
if (__output2 >= 10) {
const uint32_t __c = __output2 << 1;
// We can't use memcpy here: the decimal dot goes between these two digits.
__result[2] = __DIGIT_TABLE[__c + 1];
__result[0] = __DIGIT_TABLE[__c];
} else {
__result[0] = static_cast<char>('0' + __output2);
}
// Print decimal point if needed.
uint32_t __index;
if (__olength > 1) {
__result[1] = '.';
__index = __olength + 1;
} else {
__index = 1;
}
// Print the exponent.
__result[__index++] = 'e';
if (_Scientific_exponent < 0) {
__result[__index++] = '-';
_Scientific_exponent = -_Scientific_exponent;
} else {
__result[__index++] = '+';
}
if (_Scientific_exponent >= 100) {
const int32_t __c = _Scientific_exponent % 10;
_VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2);
__result[__index + 2] = static_cast<char>('0' + __c);
__index += 3;
} else {
_VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
__index += 2;
}
return { _First + _Total_scientific_length, errc{} };
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent,
__floating_decimal_64* const __v) {
const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
if (__e2 > 0) {
// f = __m2 * 2^__e2 >= 2^53 is an integer.
// Ignore this case for now.
return false;
}
if (__e2 < -52) {
// f < 1.
return false;
}
// Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53.
// Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0.
const uint64_t __mask = (1ull << -__e2) - 1;
const uint64_t __fraction = __m2 & __mask;
if (__fraction != 0) {
return false;
}
// f is an integer in the range [1, 2^53).
// Note: __mantissa might contain trailing (decimal) 0's.
// Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17().
__v->__mantissa = __m2 >> -__e2;
__v->__exponent = 0;
return true;
}
[[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f,
const chars_format _Fmt) {
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint64_t __bits = __double_to_bits(__f);
// Case distinction; exit early for the easy cases.
if (__bits == 0) {
if (_Fmt == chars_format::scientific) {
if (_Last - _First < 5) {
return { _Last, errc::value_too_large };
}
_VSTD::memcpy(_First, "0e+00", 5);
return { _First + 5, errc{} };
}
// Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First = '0';
return { _First + 1, errc{} };
}
// Decode __bits into mantissa and exponent.
const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
if (_Fmt == chars_format::fixed) {
// const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
- __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization
// Normal values are equal to _Mantissa2 * 2^_Exponent2.
// (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
// For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
// In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away
// the zeros.) The dense range of exactly representable integers has negative or zero exponents
// (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
// every digit is necessary to uniquely identify the value, so Ryu must print them all.
// Positive exponents are the non-dense range of exactly representable integers. This contains all of the values
// for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive
// exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers
// (so it's okay if we call it with a Ryu-friendly value).
if (_Exponent2 > 0) {
return __d2fixed_buffered_n(_First, _Last, __f, 0);
}
}
__floating_decimal_64 __v;
const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v);
if (__isSmallInt) {
// For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros.
// For scientific notation we need to move these zeros into the exponent.
// (This is not needed for fixed-point notation, so it might be beneficial to trim
// trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.)
for (;;) {
const uint64_t __q = __div10(__v.__mantissa);
const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q);
if (__r != 0) {
break;
}
__v.__mantissa = __q;
++__v.__exponent;
}
} else {
__v = __d2d(__ieeeMantissa, __ieeeExponent);
}
return __to_chars(_First, _Last, __v, _Fmt, __f);
}
_LIBCPP_END_NAMESPACE_STD
// clang-format on
|