aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/libcxx/src/include/to_chars_floating_point.h
blob: 081d671fc59e7a437ea3cd16f6c1a4778550ed3e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

// This implementation is dedicated to the memory of Mary and Thavatchai.

#ifndef _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H
#define _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H

// Avoid formatting to keep the changes with the original code minimal.
// clang-format off

#include "__algorithm/find.h"
#include "__algorithm/find_if.h"
#include "__algorithm/lower_bound.h"
#include "__algorithm/min.h"
#include "__config"
#include "__iterator/access.h"
#include "__iterator/size.h"
#include "bit"
#include "cfloat"
#include "climits"
#include "include/ryu/ryu.h"

_LIBCPP_BEGIN_NAMESPACE_STD

namespace __itoa {
inline constexpr char _Charconv_digits[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e',
    'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
static_assert(_VSTD::size(_Charconv_digits) == 36);
} // __itoa

// vvvvvvvvvv DERIVED FROM corecrt_internal_fltintrn.h vvvvvvvvvv

template <class _FloatingType>
struct _Floating_type_traits;

template <>
struct _Floating_type_traits<float> {
    static constexpr int32_t _Mantissa_bits = FLT_MANT_DIG;
    static constexpr int32_t _Exponent_bits = sizeof(float) * CHAR_BIT - FLT_MANT_DIG;

    static constexpr int32_t _Maximum_binary_exponent = FLT_MAX_EXP - 1;
    static constexpr int32_t _Minimum_binary_exponent = FLT_MIN_EXP - 1;

    static constexpr int32_t _Exponent_bias = 127;

    static constexpr int32_t _Sign_shift     = _Exponent_bits + _Mantissa_bits - 1;
    static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1;

    using _Uint_type = uint32_t;

    static constexpr uint32_t _Exponent_mask             = (1u << _Exponent_bits) - 1;
    static constexpr uint32_t _Normal_mantissa_mask      = (1u << _Mantissa_bits) - 1;
    static constexpr uint32_t _Denormal_mantissa_mask    = (1u << (_Mantissa_bits - 1)) - 1;
    static constexpr uint32_t _Special_nan_mantissa_mask = 1u << (_Mantissa_bits - 2);
    static constexpr uint32_t _Shifted_sign_mask         = 1u << _Sign_shift;
    static constexpr uint32_t _Shifted_exponent_mask     = _Exponent_mask << _Exponent_shift;
};

template <>
struct _Floating_type_traits<double> {
    static constexpr int32_t _Mantissa_bits = DBL_MANT_DIG;
    static constexpr int32_t _Exponent_bits = sizeof(double) * CHAR_BIT - DBL_MANT_DIG;

    static constexpr int32_t _Maximum_binary_exponent = DBL_MAX_EXP - 1;
    static constexpr int32_t _Minimum_binary_exponent = DBL_MIN_EXP - 1;

    static constexpr int32_t _Exponent_bias = 1023;

    static constexpr int32_t _Sign_shift     = _Exponent_bits + _Mantissa_bits - 1;
    static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1;

    using _Uint_type = uint64_t;

    static constexpr uint64_t _Exponent_mask             = (1ULL << _Exponent_bits) - 1;
    static constexpr uint64_t _Normal_mantissa_mask      = (1ULL << _Mantissa_bits) - 1;
    static constexpr uint64_t _Denormal_mantissa_mask    = (1ULL << (_Mantissa_bits - 1)) - 1;
    static constexpr uint64_t _Special_nan_mantissa_mask = 1ULL << (_Mantissa_bits - 2);
    static constexpr uint64_t _Shifted_sign_mask         = 1ULL << _Sign_shift;
    static constexpr uint64_t _Shifted_exponent_mask     = _Exponent_mask << _Exponent_shift;
};

// ^^^^^^^^^^ DERIVED FROM corecrt_internal_fltintrn.h ^^^^^^^^^^

// FUNCTION to_chars (FLOATING-POINT TO STRING)
template <class _Floating>
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
to_chars_result _Floating_to_chars_hex_precision(
    char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept {

    // * Determine the effective _Precision.
    // * Later, we'll decrement _Precision when printing each hexit after the decimal point.

    // The hexits after the decimal point correspond to the explicitly stored fraction bits.
    // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, which is 6 hexits.
    // double explicitly stores 52 fraction bits. 52 / 4 == 13, which is 13 hexits.
    constexpr int _Full_precision         = _IsSame<_Floating, float>::value ? 6 : 13;
    constexpr int _Adjusted_explicit_bits = _Full_precision * 4;

    if (_Precision < 0) {
        // C11 7.21.6.1 "The fprintf function"/5: "A negative precision argument is taken as if the precision were
        // omitted." /8: "if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient
        // for an exact representation of the value"
        _Precision = _Full_precision;
    }

    // * Extract the _Ieee_mantissa and _Ieee_exponent.
    using _Traits    = _Floating_type_traits<_Floating>;
    using _Uint_type = typename _Traits::_Uint_type;

    const _Uint_type _Uint_value    = _VSTD::bit_cast<_Uint_type>(_Value);
    const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;
    const int32_t _Ieee_exponent    = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift);

    // * Prepare the _Adjusted_mantissa. This is aligned to hexit boundaries,
    // * with the implicit bit restored (0 for zero values and subnormal values, 1 for normal values).
    // * Also calculate the _Unbiased_exponent. This unifies the processing of zero, subnormal, and normal values.
    _Uint_type _Adjusted_mantissa;

    if constexpr (_IsSame<_Floating, float>::value) {
        _Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4)
    } else {
        _Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4)
    }

    int32_t _Unbiased_exponent;

    if (_Ieee_exponent == 0) { // zero or subnormal
        // implicit bit is 0

        if (_Ieee_mantissa == 0) { // zero
            // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero."
            _Unbiased_exponent = 0;
        } else { // subnormal
            _Unbiased_exponent = 1 - _Traits::_Exponent_bias;
        }
    } else { // normal
        _Adjusted_mantissa |= _Uint_type{1} << _Adjusted_explicit_bits; // implicit bit is 1
        _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias;
    }

    // _Unbiased_exponent is within [-126, 127] for float, [-1022, 1023] for double.

    // * Decompose _Unbiased_exponent into _Sign_character and _Absolute_exponent.
    char _Sign_character;
    uint32_t _Absolute_exponent;

    if (_Unbiased_exponent < 0) {
        _Sign_character    = '-';
        _Absolute_exponent = static_cast<uint32_t>(-_Unbiased_exponent);
    } else {
        _Sign_character    = '+';
        _Absolute_exponent = static_cast<uint32_t>(_Unbiased_exponent);
    }

    // _Absolute_exponent is within [0, 127] for float, [0, 1023] for double.

    // * Perform a single bounds check.
    {
        int32_t _Exponent_length;

        if (_Absolute_exponent < 10) {
            _Exponent_length = 1;
        } else if (_Absolute_exponent < 100) {
            _Exponent_length = 2;
        } else if constexpr (_IsSame<_Floating, float>::value) {
            _Exponent_length = 3;
        } else if (_Absolute_exponent < 1000) {
            _Exponent_length = 3;
        } else {
            _Exponent_length = 4;
        }

        // _Precision might be enormous; avoid integer overflow by testing it separately.
        ptrdiff_t _Buffer_size = _Last - _First;

        if (_Buffer_size < _Precision) {
            return {_Last, errc::value_too_large};
        }

        _Buffer_size -= _Precision;

        const int32_t _Length_excluding_precision = 1 // leading hexit
                                                    + static_cast<int32_t>(_Precision > 0) // possible decimal point
                                                    // excluding `+ _Precision`, hexits after decimal point
                                                    + 2 // "p+" or "p-"
                                                    + _Exponent_length; // exponent

        if (_Buffer_size < _Length_excluding_precision) {
            return {_Last, errc::value_too_large};
        }
    }

    // * Perform rounding when we've been asked to omit hexits.
    if (_Precision < _Full_precision) {
        // _Precision is within [0, 5] for float, [0, 12] for double.

        // _Dropped_bits is within [4, 24] for float, [4, 52] for double.
        const int _Dropped_bits = (_Full_precision - _Precision) * 4;

        // Perform rounding by adding an appropriately-shifted bit.

        // This can propagate carries all the way into the leading hexit. Examples:
        // "0.ff9" rounded to a precision of 2 is "1.00".
        // "1.ff9" rounded to a precision of 2 is "2.00".

        // Note that the leading hexit participates in the rounding decision. Examples:
        // "0.8" rounded to a precision of 0 is "0".
        // "1.8" rounded to a precision of 0 is "2".

        // Reference implementation with suboptimal codegen:
        // bool _Should_round_up(bool _Lsb_bit, bool _Round_bit, bool _Has_tail_bits) {
        //    // If there are no insignificant set bits, the value is exactly-representable and should not be rounded.
        //    //
        //    // If there are insignificant set bits, we need to round according to round_to_nearest.
        //    // We need to handle two cases: we round up if either [1] the value is slightly greater
        //    // than the midpoint between two exactly-representable values or [2] the value is exactly the midpoint
        //    // between two exactly-representable values and the greater of the two is even (this is "round-to-even").
        //    return _Round_bit && (_Has_tail_bits || _Lsb_bit);
        //}
        // const bool _Lsb_bit       = (_Adjusted_mantissa & (_Uint_type{1} << _Dropped_bits)) != 0;
        // const bool _Round_bit     = (_Adjusted_mantissa & (_Uint_type{1} << (_Dropped_bits - 1))) != 0;
        // const bool _Has_tail_bits = (_Adjusted_mantissa & ((_Uint_type{1} << (_Dropped_bits - 1)) - 1)) != 0;
        // const bool _Should_round = _Should_round_up(_Lsb_bit, _Round_bit, _Has_tail_bits);
        // _Adjusted_mantissa += _Uint_type{_Should_round} << _Dropped_bits;

        // Example for optimized implementation: Let _Dropped_bits be 8.
        //          Bit index: ...[8]76543210
        // _Adjusted_mantissa: ...[L]RTTTTTTT (not depicting known details, like hexit alignment)
        // By focusing on the bit at index _Dropped_bits, we can avoid unnecessary branching and shifting.

        // Bit index: ...[8]76543210
        //  _Lsb_bit: ...[L]RTTTTTTT
        const _Uint_type _Lsb_bit = _Adjusted_mantissa;

        //  Bit index: ...9[8]76543210
        // _Round_bit: ...L[R]TTTTTTT0
        const _Uint_type _Round_bit = _Adjusted_mantissa << 1;

        // We can detect (without branching) whether any of the trailing bits are set.
        // Due to _Should_round below, this computation will be used if and only if R is 1, so we can assume that here.
        //      Bit index: ...9[8]76543210
        //     _Round_bit: ...L[1]TTTTTTT0
        // _Has_tail_bits: ....[H]........

        // If all of the trailing bits T are 0, then `_Round_bit - 1` will produce 0 for H (due to R being 1).
        // If any of the trailing bits T are 1, then `_Round_bit - 1` will produce 1 for H (due to R being 1).
        const _Uint_type _Has_tail_bits = _Round_bit - 1;

        // Finally, we can use _Should_round_up() logic with bitwise-AND and bitwise-OR,
        // selecting just the bit at index _Dropped_bits. This is the appropriately-shifted bit that we want.
        const _Uint_type _Should_round = _Round_bit & (_Has_tail_bits | _Lsb_bit) & (_Uint_type{1} << _Dropped_bits);

        // This rounding technique is dedicated to the memory of Peppermint. =^..^=
        _Adjusted_mantissa += _Should_round;
    }

    // * Print the leading hexit, then mask it away.
    {
        const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Adjusted_explicit_bits);
        _LIBCPP_ASSERT(_Nibble < 3, "");
        const char _Leading_hexit = static_cast<char>('0' + _Nibble);

        *_First++ = _Leading_hexit;

        constexpr _Uint_type _Mask = (_Uint_type{1} << _Adjusted_explicit_bits) - 1;
        _Adjusted_mantissa &= _Mask;
    }

    // * Print the decimal point and trailing hexits.

    // C11 7.21.6.1 "The fprintf function"/8:
    // "if the precision is zero and the # flag is not specified, no decimal-point character appears."
    if (_Precision > 0) {
        *_First++ = '.';

        int32_t _Number_of_bits_remaining = _Adjusted_explicit_bits; // 24 for float, 52 for double

        for (;;) {
            _LIBCPP_ASSERT(_Number_of_bits_remaining >= 4, "");
            _LIBCPP_ASSERT(_Number_of_bits_remaining % 4 == 0, "");
            _Number_of_bits_remaining -= 4;

            const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining);
            _LIBCPP_ASSERT(_Nibble < 16, "");
            const char _Hexit = __itoa::_Charconv_digits[_Nibble];

            *_First++ = _Hexit;

            // _Precision is the number of hexits that still need to be printed.
            --_Precision;
            if (_Precision == 0) {
                break; // We're completely done with this phase.
            }
            // Otherwise, we need to keep printing hexits.

            if (_Number_of_bits_remaining == 0) {
                // We've finished printing _Adjusted_mantissa, so all remaining hexits are '0'.
                _VSTD::memset(_First, '0', static_cast<size_t>(_Precision));
                _First += _Precision;
                break;
            }

            // Mask away the hexit that we just printed, then keep looping.
            // (We skip this when breaking out of the loop above, because _Adjusted_mantissa isn't used later.)
            const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1;
            _Adjusted_mantissa &= _Mask;
        }
    }

    // * Print the exponent.

    // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more
    // digits as necessary to represent the decimal exponent of 2."

    // Performance note: We should take advantage of the known ranges of possible exponents.

    *_First++ = 'p';
    *_First++ = _Sign_character;

    // We've already printed '-' if necessary, so uint32_t _Absolute_exponent avoids testing that again.
    return _VSTD::to_chars(_First, _Last, _Absolute_exponent);
}

template <class _Floating>
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
to_chars_result _Floating_to_chars_hex_shortest(
    char* _First, char* const _Last, const _Floating _Value) noexcept {

    // This prints "1.728p+0" instead of "2.e5p-1".
    // This prints "0.000002p-126" instead of "1p-149" for float.
    // This prints "0.0000000000001p-1022" instead of "1p-1074" for double.
    // This prioritizes being consistent with printf's de facto behavior (and hex-precision's behavior)
    // over minimizing the number of characters printed.

    using _Traits    = _Floating_type_traits<_Floating>;
    using _Uint_type = typename _Traits::_Uint_type;

    const _Uint_type _Uint_value = _VSTD::bit_cast<_Uint_type>(_Value);

    if (_Uint_value == 0) { // zero detected; write "0p+0" and return
        // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero."
        // Special-casing zero is necessary because of the exponent.
        const char* const _Str = "0p+0";
        const size_t _Len      = 4;

        if (_Last - _First < static_cast<ptrdiff_t>(_Len)) {
            return {_Last, errc::value_too_large};
        }

        _VSTD::memcpy(_First, _Str, _Len);

        return {_First + _Len, errc{}};
    }

    const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;
    const int32_t _Ieee_exponent    = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift);

    char _Leading_hexit; // implicit bit
    int32_t _Unbiased_exponent;

    if (_Ieee_exponent == 0) { // subnormal
        _Leading_hexit     = '0';
        _Unbiased_exponent = 1 - _Traits::_Exponent_bias;
    } else { // normal
        _Leading_hexit     = '1';
        _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias;
    }

    // Performance note: Consider avoiding per-character bounds checking when there's plenty of space.

    if (_First == _Last) {
        return {_Last, errc::value_too_large};
    }

    *_First++ = _Leading_hexit;

    if (_Ieee_mantissa == 0) {
        // The fraction bits are all 0. Trim them away, including the decimal point.
    } else {
        if (_First == _Last) {
            return {_Last, errc::value_too_large};
        }

        *_First++ = '.';

        // The hexits after the decimal point correspond to the explicitly stored fraction bits.
        // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, so we'll print at most 6 hexits.
        // double explicitly stores 52 fraction bits. 52 / 4 == 13, so we'll print at most 13 hexits.
        _Uint_type _Adjusted_mantissa;
        int32_t _Number_of_bits_remaining;

        if constexpr (_IsSame<_Floating, float>::value) {
            _Adjusted_mantissa        = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4)
            _Number_of_bits_remaining = 24; // 23 fraction bits + 1 alignment bit
        } else {
            _Adjusted_mantissa        = _Ieee_mantissa; // already aligned (52 is divisible by 4)
            _Number_of_bits_remaining = 52; // 52 fraction bits
        }

        // do-while: The condition _Adjusted_mantissa != 0 is initially true - we have nonzero fraction bits and we've
        // printed the decimal point. Each iteration, we print a hexit, mask it away, and keep looping if we still have
        // nonzero fraction bits. If there would be trailing '0' hexits, this trims them. If there wouldn't be trailing
        // '0' hexits, the same condition works (as we print the final hexit and mask it away); we don't need to test
        // _Number_of_bits_remaining.
        do {
            _LIBCPP_ASSERT(_Number_of_bits_remaining >= 4, "");
            _LIBCPP_ASSERT(_Number_of_bits_remaining % 4 == 0, "");
            _Number_of_bits_remaining -= 4;

            const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining);
            _LIBCPP_ASSERT(_Nibble < 16, "");
            const char _Hexit = __itoa::_Charconv_digits[_Nibble];

            if (_First == _Last) {
                return {_Last, errc::value_too_large};
            }

            *_First++ = _Hexit;

            const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1;
            _Adjusted_mantissa &= _Mask;

        } while (_Adjusted_mantissa != 0);
    }

    // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more
    // digits as necessary to represent the decimal exponent of 2."

    // Performance note: We should take advantage of the known ranges of possible exponents.

    // float: _Unbiased_exponent is within [-126, 127].
    // double: _Unbiased_exponent is within [-1022, 1023].

    if (_Last - _First < 2) {
        return {_Last, errc::value_too_large};
    }

    *_First++ = 'p';

    if (_Unbiased_exponent < 0) {
        *_First++          = '-';
        _Unbiased_exponent = -_Unbiased_exponent;
    } else {
        *_First++ = '+';
    }

    // We've already printed '-' if necessary, so static_cast<uint32_t> avoids testing that again.
    return _VSTD::to_chars(_First, _Last, static_cast<uint32_t>(_Unbiased_exponent));
}

// For general precision, we can use lookup tables to avoid performing trial formatting.

// For a simple example, imagine counting the number of digits D in an integer, and needing to know
// whether D is less than 3, equal to 3/4/5/6, or greater than 6. We could use a lookup table:
// D | Largest integer with D digits
// 2 |      99
// 3 |     999
// 4 |   9'999
// 5 |  99'999
// 6 | 999'999
// 7 | table end
// Looking up an integer in this table with lower_bound() will work:
// * Too-small integers, like 7, 70, and 99, will cause lower_bound() to return the D == 2 row. (If all we care
//   about is whether D is less than 3, then it's okay to smash the D == 1 and D == 2 cases together.)
// * Integers in [100, 999] will cause lower_bound() to return the D == 3 row, and so forth.
// * Too-large integers, like 1'000'000 and above, will cause lower_bound() to return the end of the table. If we
//   compute D from that index, this will be considered D == 7, which will activate any "greater than 6" logic.

// Floating-point is slightly more complicated.

// The ordinary lookup tables are for X within [-5, 38] for float, and [-5, 308] for double.
// (-5 absorbs too-negative exponents, outside the P > X >= -4 criterion. 38 and 308 are the maximum exponents.)
// Due to the P > X condition, we can use a subset of the table for X within [-5, P - 1], suitably clamped.

// When P is small, rounding can affect X. For example:
// For P == 1, the largest double with X == 0 is: 9.4999999999999982236431605997495353221893310546875
// For P == 2, the largest double with X == 0 is: 9.949999999999999289457264239899814128875732421875
// For P == 3, the largest double with X == 0 is: 9.9949999999999992184029906638897955417633056640625

// Exponent adjustment is a concern for P within [1, 7] for float, and [1, 15] for double (determined via
// brute force). While larger values of P still perform rounding, they can't trigger exponent adjustment.
// This is because only values with repeated '9' digits can undergo exponent adjustment during rounding,
// and floating-point granularity limits the number of consecutive '9' digits that can appear.

// So, we need special lookup tables for small values of P.
// These tables have varying lengths due to the P > X >= -4 criterion. For example:
// For P == 1, need table entries for X: -5, -4, -3, -2, -1, 0
// For P == 2, need table entries for X: -5, -4, -3, -2, -1, 0, 1
// For P == 3, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2
// For P == 4, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2, 3

// We can concatenate these tables for compact storage, using triangular numbers to access them.
// The table for P begins at index (P - 1) * (P + 10) / 2 with length P + 5.

// For both the ordinary and special lookup tables, after an index I is returned by lower_bound(), X is I - 5.

// We need to special-case the floating-point value 0.0, which is considered to have X == 0.
// Otherwise, the lookup tables would consider it to have a highly negative X.

// Finally, because we're working with positive floating-point values,
// representation comparisons behave identically to floating-point comparisons.

// The following code generated the lookup tables for the scientific exponent X. Don't remove this code.
#if 0
// cl /EHsc /nologo /W4 /MT /O2 /std:c++17 generate_tables.cpp && generate_tables

#include <algorithm>
#include <assert.h>
#include <charconv>
#include <cmath>
#include <limits>
#include <map>
#include <stdint.h>
#include <stdio.h>
#include <system_error>
#include <type_traits>
#include <vector>
using namespace std;

template <typename UInt, typename Pred>
[[nodiscard]] UInt uint_partition_point(UInt first, const UInt last, Pred pred) {
    // Find the beginning of the false partition in [first, last).
    // [first, last) is partitioned when all of the true values occur before all of the false values.

    static_assert(is_unsigned_v<UInt>);
    assert(first <= last);

    for (UInt n = last - first; n > 0;) {
        const UInt n2  = n / 2;
        const UInt mid = first + n2;

        if (pred(mid)) {
            first = mid + 1;
            n     = n - n2 - 1;
        } else {
            n = n2;
        }
    }

    return first;
}

template <typename Floating>
[[nodiscard]] int scientific_exponent_X(const int P, const Floating flt) {
    char buf[400]; // more than enough

    // C11 7.21.6.1 "The fprintf function"/8 performs trial formatting with scientific precision P - 1.
    const auto to_result = to_chars(buf, end(buf), flt, chars_format::scientific, P - 1);
    assert(to_result.ec == errc{});

    const char* exp_ptr = find(buf, to_result.ptr, 'e');
    assert(exp_ptr != to_result.ptr);

    ++exp_ptr; // advance past 'e'

    if (*exp_ptr == '+') {
        ++exp_ptr; // advance past '+' which from_chars() won't parse
    }

    int X;
    const auto from_result = from_chars(exp_ptr, to_result.ptr, X);
    assert(from_result.ec == errc{});
    return X;
}

template <typename UInt>
void print_table(const vector<UInt>& v, const char* const name) {
    constexpr const char* UIntName = _IsSame<UInt, uint32_t>::value ? "uint32_t" : "uint64_t";

    printf("static constexpr %s %s[%zu] = {\n", UIntName, name, v.size());

    for (const auto& val : v) {
        if constexpr (_IsSame<UInt, uint32_t>::value) {
            printf("0x%08Xu,\n", val);
        } else {
            printf("0x%016llXu,\n", val);
        }
    }

    printf("};\n");
}

enum class Mode { Tables, Tests };

template <typename Floating>
void generate_tables(const Mode mode) {
    using Limits = numeric_limits<Floating>;
    using UInt   = conditional_t<_IsSame<Floating, float>::value, uint32_t, uint64_t>;

    map<int, map<int, UInt>> P_X_LargestValWithX;

    constexpr int MaxP = Limits::max_exponent10 + 1; // MaxP performs no rounding during trial formatting

    for (int P = 1; P <= MaxP; ++P) {
        for (int X = -5; X < P; ++X) {
            constexpr Floating first = static_cast<Floating>(9e-5); // well below 9.5e-5, otherwise arbitrary
            constexpr Floating last  = Limits::infinity(); // one bit above Limits::max()

            const UInt val_beyond_X = uint_partition_point(reinterpret_cast<const UInt&>(first),
                reinterpret_cast<const UInt&>(last),
                [P, X](const UInt u) { return scientific_exponent_X(P, reinterpret_cast<const Floating&>(u)) <= X; });

            P_X_LargestValWithX[P][X] = val_beyond_X - 1;
        }
    }

    constexpr const char* FloatingName = _IsSame<Floating, float>::value ? "float" : "double";

    constexpr int MaxSpecialP = _IsSame<Floating, float>::value ? 7 : 15; // MaxSpecialP is affected by exponent adjustment

    if (mode == Mode::Tables) {
        printf("template <>\n");
        printf("struct _General_precision_tables<%s> {\n", FloatingName);

        printf("static constexpr int _Max_special_P = %d;\n", MaxSpecialP);

        vector<UInt> special;

        for (int P = 1; P <= MaxSpecialP; ++P) {
            for (int X = -5; X < P; ++X) {
                const UInt val = P_X_LargestValWithX[P][X];
                special.push_back(val);
            }
        }

        print_table(special, "_Special_X_table");

        for (int P = MaxSpecialP + 1; P < MaxP; ++P) {
            for (int X = -5; X < P; ++X) {
                const UInt val = P_X_LargestValWithX[P][X];
                assert(val == P_X_LargestValWithX[MaxP][X]);
            }
        }

        printf("static constexpr int _Max_P = %d;\n", MaxP);

        vector<UInt> ordinary;

        for (int X = -5; X < MaxP; ++X) {
            const UInt val = P_X_LargestValWithX[MaxP][X];
            ordinary.push_back(val);
        }

        print_table(ordinary, "_Ordinary_X_table");

        printf("};\n");
    } else {
        printf("==========\n");
        printf("Test cases for %s:\n", FloatingName);

        constexpr int Hexits         = _IsSame<Floating, float>::value ? 6 : 13;
        constexpr const char* Suffix = _IsSame<Floating, float>::value ? "f" : "";

        for (int P = 1; P <= MaxP; ++P) {
            for (int X = -5; X < P; ++X) {
                if (P <= MaxSpecialP || P == 25 || P == MaxP || X == P - 1) {
                    const UInt val1   = P_X_LargestValWithX[P][X];
                    const Floating f1 = reinterpret_cast<const Floating&>(val1);
                    const UInt val2   = val1 + 1;
                    const Floating f2 = reinterpret_cast<const Floating&>(val2);

                    printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n", Hexits, f1, Suffix, P, P, f1);
                    if (isfinite(f2)) {
                        printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n", Hexits, f2, Suffix, P, P, f2);
                    }
                }
            }
        }
    }
}

int main() {
    printf("template <class _Floating>\n");
    printf("struct _General_precision_tables;\n");
    generate_tables<float>(Mode::Tables);
    generate_tables<double>(Mode::Tables);
    generate_tables<float>(Mode::Tests);
    generate_tables<double>(Mode::Tests);
}
#endif // 0

template <class _Floating>
struct _General_precision_tables;

template <>
struct _General_precision_tables<float> {
    static constexpr int _Max_special_P = 7;

    static constexpr uint32_t _Special_X_table[63] = {0x38C73ABCu, 0x3A79096Bu, 0x3C1BA5E3u, 0x3DC28F5Cu, 0x3F733333u,
        0x4117FFFFu, 0x38D0AAA7u, 0x3A826AA8u, 0x3C230553u, 0x3DCBC6A7u, 0x3F7EB851u, 0x411F3333u, 0x42C6FFFFu,
        0x38D19C3Fu, 0x3A8301A7u, 0x3C23C211u, 0x3DCCB295u, 0x3F7FDF3Bu, 0x411FEB85u, 0x42C7E666u, 0x4479DFFFu,
        0x38D1B468u, 0x3A8310C1u, 0x3C23D4F1u, 0x3DCCCA2Du, 0x3F7FFCB9u, 0x411FFDF3u, 0x42C7FD70u, 0x4479FCCCu,
        0x461C3DFFu, 0x38D1B6D2u, 0x3A831243u, 0x3C23D6D4u, 0x3DCCCC89u, 0x3F7FFFACu, 0x411FFFCBu, 0x42C7FFBEu,
        0x4479FFAEu, 0x461C3FCCu, 0x47C34FBFu, 0x38D1B710u, 0x3A83126Au, 0x3C23D704u, 0x3DCCCCC6u, 0x3F7FFFF7u,
        0x411FFFFAu, 0x42C7FFF9u, 0x4479FFF7u, 0x461C3FFAu, 0x47C34FF9u, 0x497423F7u, 0x38D1B716u, 0x3A83126Eu,
        0x3C23D709u, 0x3DCCCCCCu, 0x3F7FFFFFu, 0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu,
        0x497423FFu, 0x4B18967Fu};

    static constexpr int _Max_P = 39;

    static constexpr uint32_t _Ordinary_X_table[44] = {0x38D1B717u, 0x3A83126Eu, 0x3C23D70Au, 0x3DCCCCCCu, 0x3F7FFFFFu,
        0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu, 0x497423FFu, 0x4B18967Fu, 0x4CBEBC1Fu,
        0x4E6E6B27u, 0x501502F8u, 0x51BA43B7u, 0x5368D4A5u, 0x551184E7u, 0x56B5E620u, 0x58635FA9u, 0x5A0E1BC9u,
        0x5BB1A2BCu, 0x5D5E0B6Bu, 0x5F0AC723u, 0x60AD78EBu, 0x6258D726u, 0x64078678u, 0x65A96816u, 0x6753C21Bu,
        0x69045951u, 0x6AA56FA5u, 0x6C4ECB8Fu, 0x6E013F39u, 0x6FA18F07u, 0x7149F2C9u, 0x72FC6F7Cu, 0x749DC5ADu,
        0x76453719u, 0x77F684DFu, 0x799A130Bu, 0x7B4097CEu, 0x7CF0BDC2u, 0x7E967699u, 0x7F7FFFFFu};
};

template <>
struct _General_precision_tables<double> {
    static constexpr int _Max_special_P = 15;

    static constexpr uint64_t _Special_X_table[195] = {0x3F18E757928E0C9Du, 0x3F4F212D77318FC5u, 0x3F8374BC6A7EF9DBu,
        0x3FB851EB851EB851u, 0x3FEE666666666666u, 0x4022FFFFFFFFFFFFu, 0x3F1A1554FBDAD751u, 0x3F504D551D68C692u,
        0x3F8460AA64C2F837u, 0x3FB978D4FDF3B645u, 0x3FEFD70A3D70A3D7u, 0x4023E66666666666u, 0x4058DFFFFFFFFFFFu,
        0x3F1A3387ECC8EB96u, 0x3F506034F3FD933Eu, 0x3F84784230FCF80Du, 0x3FB99652BD3C3611u, 0x3FEFFBE76C8B4395u,
        0x4023FD70A3D70A3Du, 0x4058FCCCCCCCCCCCu, 0x408F3BFFFFFFFFFFu, 0x3F1A368D04E0BA6Au, 0x3F506218230C7482u,
        0x3F847A9E2BCF91A3u, 0x3FB99945B6C3760Bu, 0x3FEFFF972474538Eu, 0x4023FFBE76C8B439u, 0x4058FFAE147AE147u,
        0x408F3F9999999999u, 0x40C387BFFFFFFFFFu, 0x3F1A36DA54164F19u, 0x3F506248748DF16Fu, 0x3F847ADA91B16DCBu,
        0x3FB99991361DC93Eu, 0x3FEFFFF583A53B8Eu, 0x4023FFF972474538u, 0x4058FFF7CED91687u, 0x408F3FF5C28F5C28u,
        0x40C387F999999999u, 0x40F869F7FFFFFFFFu, 0x3F1A36E20F35445Du, 0x3F50624D49814ABAu, 0x3F847AE09BE19D69u,
        0x3FB99998C2DA04C3u, 0x3FEFFFFEF39085F4u, 0x4023FFFF583A53B8u, 0x4058FFFF2E48E8A7u, 0x408F3FFEF9DB22D0u,
        0x40C387FF5C28F5C2u, 0x40F869FF33333333u, 0x412E847EFFFFFFFFu, 0x3F1A36E2D51EC34Bu, 0x3F50624DC5333A0Eu,
        0x3F847AE136800892u, 0x3FB9999984200AB7u, 0x3FEFFFFFE5280D65u, 0x4023FFFFEF39085Fu, 0x4058FFFFEB074A77u,
        0x408F3FFFE5C91D14u, 0x40C387FFEF9DB22Du, 0x40F869FFEB851EB8u, 0x412E847FE6666666u, 0x416312CFEFFFFFFFu,
        0x3F1A36E2E8E94FFCu, 0x3F50624DD191D1FDu, 0x3F847AE145F6467Du, 0x3FB999999773D81Cu, 0x3FEFFFFFFD50CE23u,
        0x4023FFFFFE5280D6u, 0x4058FFFFFDE7210Bu, 0x408F3FFFFD60E94Eu, 0x40C387FFFE5C91D1u, 0x40F869FFFDF3B645u,
        0x412E847FFD70A3D7u, 0x416312CFFE666666u, 0x4197D783FDFFFFFFu, 0x3F1A36E2EAE3F7A7u, 0x3F50624DD2CE7AC8u,
        0x3F847AE14782197Bu, 0x3FB9999999629FD9u, 0x3FEFFFFFFFBB47D0u, 0x4023FFFFFFD50CE2u, 0x4058FFFFFFCA501Au,
        0x408F3FFFFFBCE421u, 0x40C387FFFFD60E94u, 0x40F869FFFFCB923Au, 0x412E847FFFBE76C8u, 0x416312CFFFD70A3Du,
        0x4197D783FFCCCCCCu, 0x41CDCD64FFBFFFFFu, 0x3F1A36E2EB16A205u, 0x3F50624DD2EE2543u, 0x3F847AE147A9AE94u,
        0x3FB9999999941A39u, 0x3FEFFFFFFFF920C8u, 0x4023FFFFFFFBB47Du, 0x4058FFFFFFFAA19Cu, 0x408F3FFFFFF94A03u,
        0x40C387FFFFFBCE42u, 0x40F869FFFFFAC1D2u, 0x412E847FFFF97247u, 0x416312CFFFFBE76Cu, 0x4197D783FFFAE147u,
        0x41CDCD64FFF99999u, 0x4202A05F1FFBFFFFu, 0x3F1A36E2EB1BB30Fu, 0x3F50624DD2F14FE9u, 0x3F847AE147ADA3E3u,
        0x3FB9999999990CDCu, 0x3FEFFFFFFFFF5014u, 0x4023FFFFFFFF920Cu, 0x4058FFFFFFFF768Fu, 0x408F3FFFFFFF5433u,
        0x40C387FFFFFF94A0u, 0x40F869FFFFFF79C8u, 0x412E847FFFFF583Au, 0x416312CFFFFF9724u, 0x4197D783FFFF7CEDu,
        0x41CDCD64FFFF5C28u, 0x4202A05F1FFF9999u, 0x42374876E7FF7FFFu, 0x3F1A36E2EB1C34C3u, 0x3F50624DD2F1A0FAu,
        0x3F847AE147AE0938u, 0x3FB9999999998B86u, 0x3FEFFFFFFFFFEE68u, 0x4023FFFFFFFFF501u, 0x4058FFFFFFFFF241u,
        0x408F3FFFFFFFEED1u, 0x40C387FFFFFFF543u, 0x40F869FFFFFFF294u, 0x412E847FFFFFEF39u, 0x416312CFFFFFF583u,
        0x4197D783FFFFF2E4u, 0x41CDCD64FFFFEF9Du, 0x4202A05F1FFFF5C2u, 0x42374876E7FFF333u, 0x426D1A94A1FFEFFFu,
        0x3F1A36E2EB1C41BBu, 0x3F50624DD2F1A915u, 0x3F847AE147AE135Au, 0x3FB9999999999831u, 0x3FEFFFFFFFFFFE3Du,
        0x4023FFFFFFFFFEE6u, 0x4058FFFFFFFFFEA0u, 0x408F3FFFFFFFFE48u, 0x40C387FFFFFFFEEDu, 0x40F869FFFFFFFEA8u,
        0x412E847FFFFFFE52u, 0x416312CFFFFFFEF3u, 0x4197D783FFFFFEB0u, 0x41CDCD64FFFFFE5Cu, 0x4202A05F1FFFFEF9u,
        0x42374876E7FFFEB8u, 0x426D1A94A1FFFE66u, 0x42A2309CE53FFEFFu, 0x3F1A36E2EB1C4307u, 0x3F50624DD2F1A9E4u,
        0x3F847AE147AE145Eu, 0x3FB9999999999975u, 0x3FEFFFFFFFFFFFD2u, 0x4023FFFFFFFFFFE3u, 0x4058FFFFFFFFFFDCu,
        0x408F3FFFFFFFFFD4u, 0x40C387FFFFFFFFE4u, 0x40F869FFFFFFFFDDu, 0x412E847FFFFFFFD5u, 0x416312CFFFFFFFE5u,
        0x4197D783FFFFFFDEu, 0x41CDCD64FFFFFFD6u, 0x4202A05F1FFFFFE5u, 0x42374876E7FFFFDFu, 0x426D1A94A1FFFFD7u,
        0x42A2309CE53FFFE6u, 0x42D6BCC41E8FFFDFu, 0x3F1A36E2EB1C4328u, 0x3F50624DD2F1A9F9u, 0x3F847AE147AE1477u,
        0x3FB9999999999995u, 0x3FEFFFFFFFFFFFFBu, 0x4023FFFFFFFFFFFDu, 0x4058FFFFFFFFFFFCu, 0x408F3FFFFFFFFFFBu,
        0x40C387FFFFFFFFFDu, 0x40F869FFFFFFFFFCu, 0x412E847FFFFFFFFBu, 0x416312CFFFFFFFFDu, 0x4197D783FFFFFFFCu,
        0x41CDCD64FFFFFFFBu, 0x4202A05F1FFFFFFDu, 0x42374876E7FFFFFCu, 0x426D1A94A1FFFFFBu, 0x42A2309CE53FFFFDu,
        0x42D6BCC41E8FFFFCu, 0x430C6BF52633FFFBu};

    static constexpr int _Max_P = 309;

    static constexpr uint64_t _Ordinary_X_table[314] = {0x3F1A36E2EB1C432Cu, 0x3F50624DD2F1A9FBu, 0x3F847AE147AE147Au,
        0x3FB9999999999999u, 0x3FEFFFFFFFFFFFFFu, 0x4023FFFFFFFFFFFFu, 0x4058FFFFFFFFFFFFu, 0x408F3FFFFFFFFFFFu,
        0x40C387FFFFFFFFFFu, 0x40F869FFFFFFFFFFu, 0x412E847FFFFFFFFFu, 0x416312CFFFFFFFFFu, 0x4197D783FFFFFFFFu,
        0x41CDCD64FFFFFFFFu, 0x4202A05F1FFFFFFFu, 0x42374876E7FFFFFFu, 0x426D1A94A1FFFFFFu, 0x42A2309CE53FFFFFu,
        0x42D6BCC41E8FFFFFu, 0x430C6BF52633FFFFu, 0x4341C37937E07FFFu, 0x4376345785D89FFFu, 0x43ABC16D674EC7FFu,
        0x43E158E460913CFFu, 0x4415AF1D78B58C3Fu, 0x444B1AE4D6E2EF4Fu, 0x4480F0CF064DD591u, 0x44B52D02C7E14AF6u,
        0x44EA784379D99DB4u, 0x45208B2A2C280290u, 0x4554ADF4B7320334u, 0x4589D971E4FE8401u, 0x45C027E72F1F1281u,
        0x45F431E0FAE6D721u, 0x46293E5939A08CE9u, 0x465F8DEF8808B024u, 0x4693B8B5B5056E16u, 0x46C8A6E32246C99Cu,
        0x46FED09BEAD87C03u, 0x4733426172C74D82u, 0x476812F9CF7920E2u, 0x479E17B84357691Bu, 0x47D2CED32A16A1B1u,
        0x48078287F49C4A1Du, 0x483D6329F1C35CA4u, 0x48725DFA371A19E6u, 0x48A6F578C4E0A060u, 0x48DCB2D6F618C878u,
        0x4911EFC659CF7D4Bu, 0x49466BB7F0435C9Eu, 0x497C06A5EC5433C6u, 0x49B18427B3B4A05Bu, 0x49E5E531A0A1C872u,
        0x4A1B5E7E08CA3A8Fu, 0x4A511B0EC57E6499u, 0x4A8561D276DDFDC0u, 0x4ABABA4714957D30u, 0x4AF0B46C6CDD6E3Eu,
        0x4B24E1878814C9CDu, 0x4B5A19E96A19FC40u, 0x4B905031E2503DA8u, 0x4BC4643E5AE44D12u, 0x4BF97D4DF19D6057u,
        0x4C2FDCA16E04B86Du, 0x4C63E9E4E4C2F344u, 0x4C98E45E1DF3B015u, 0x4CCF1D75A5709C1Au, 0x4D03726987666190u,
        0x4D384F03E93FF9F4u, 0x4D6E62C4E38FF872u, 0x4DA2FDBB0E39FB47u, 0x4DD7BD29D1C87A19u, 0x4E0DAC74463A989Fu,
        0x4E428BC8ABE49F63u, 0x4E772EBAD6DDC73Cu, 0x4EACFA698C95390Bu, 0x4EE21C81F7DD43A7u, 0x4F16A3A275D49491u,
        0x4F4C4C8B1349B9B5u, 0x4F81AFD6EC0E1411u, 0x4FB61BCCA7119915u, 0x4FEBA2BFD0D5FF5Bu, 0x502145B7E285BF98u,
        0x50559725DB272F7Fu, 0x508AFCEF51F0FB5Eu, 0x50C0DE1593369D1Bu, 0x50F5159AF8044462u, 0x512A5B01B605557Au,
        0x516078E111C3556Cu, 0x5194971956342AC7u, 0x51C9BCDFABC13579u, 0x5200160BCB58C16Cu, 0x52341B8EBE2EF1C7u,
        0x526922726DBAAE39u, 0x529F6B0F092959C7u, 0x52D3A2E965B9D81Cu, 0x53088BA3BF284E23u, 0x533EAE8CAEF261ACu,
        0x53732D17ED577D0Bu, 0x53A7F85DE8AD5C4Eu, 0x53DDF67562D8B362u, 0x5412BA095DC7701Du, 0x5447688BB5394C25u,
        0x547D42AEA2879F2Eu, 0x54B249AD2594C37Cu, 0x54E6DC186EF9F45Cu, 0x551C931E8AB87173u, 0x5551DBF316B346E7u,
        0x558652EFDC6018A1u, 0x55BBE7ABD3781ECAu, 0x55F170CB642B133Eu, 0x5625CCFE3D35D80Eu, 0x565B403DCC834E11u,
        0x569108269FD210CBu, 0x56C54A3047C694FDu, 0x56FA9CBC59B83A3Du, 0x5730A1F5B8132466u, 0x5764CA732617ED7Fu,
        0x5799FD0FEF9DE8DFu, 0x57D03E29F5C2B18Bu, 0x58044DB473335DEEu, 0x583961219000356Au, 0x586FB969F40042C5u,
        0x58A3D3E2388029BBu, 0x58D8C8DAC6A0342Au, 0x590EFB1178484134u, 0x59435CEAEB2D28C0u, 0x59783425A5F872F1u,
        0x59AE412F0F768FADu, 0x59E2E8BD69AA19CCu, 0x5A17A2ECC414A03Fu, 0x5A4D8BA7F519C84Fu, 0x5A827748F9301D31u,
        0x5AB7151B377C247Eu, 0x5AECDA62055B2D9Du, 0x5B22087D4358FC82u, 0x5B568A9C942F3BA3u, 0x5B8C2D43B93B0A8Bu,
        0x5BC19C4A53C4E697u, 0x5BF6035CE8B6203Du, 0x5C2B843422E3A84Cu, 0x5C6132A095CE492Fu, 0x5C957F48BB41DB7Bu,
        0x5CCADF1AEA12525Au, 0x5D00CB70D24B7378u, 0x5D34FE4D06DE5056u, 0x5D6A3DE04895E46Cu, 0x5DA066AC2D5DAEC3u,
        0x5DD4805738B51A74u, 0x5E09A06D06E26112u, 0x5E400444244D7CABu, 0x5E7405552D60DBD6u, 0x5EA906AA78B912CBu,
        0x5EDF485516E7577Eu, 0x5F138D352E5096AFu, 0x5F48708279E4BC5Au, 0x5F7E8CA3185DEB71u, 0x5FB317E5EF3AB327u,
        0x5FE7DDDF6B095FF0u, 0x601DD55745CBB7ECu, 0x6052A5568B9F52F4u, 0x60874EAC2E8727B1u, 0x60BD22573A28F19Du,
        0x60F2357684599702u, 0x6126C2D4256FFCC2u, 0x615C73892ECBFBF3u, 0x6191C835BD3F7D78u, 0x61C63A432C8F5CD6u,
        0x61FBC8D3F7B3340Bu, 0x62315D847AD00087u, 0x6265B4E5998400A9u, 0x629B221EFFE500D3u, 0x62D0F5535FEF2084u,
        0x630532A837EAE8A5u, 0x633A7F5245E5A2CEu, 0x63708F936BAF85C1u, 0x63A4B378469B6731u, 0x63D9E056584240FDu,
        0x64102C35F729689Eu, 0x6444374374F3C2C6u, 0x647945145230B377u, 0x64AF965966BCE055u, 0x64E3BDF7E0360C35u,
        0x6518AD75D8438F43u, 0x654ED8D34E547313u, 0x6583478410F4C7ECu, 0x65B819651531F9E7u, 0x65EE1FBE5A7E7861u,
        0x6622D3D6F88F0B3Cu, 0x665788CCB6B2CE0Cu, 0x668D6AFFE45F818Fu, 0x66C262DFEEBBB0F9u, 0x66F6FB97EA6A9D37u,
        0x672CBA7DE5054485u, 0x6761F48EAF234AD3u, 0x679671B25AEC1D88u, 0x67CC0E1EF1A724EAu, 0x680188D357087712u,
        0x6835EB082CCA94D7u, 0x686B65CA37FD3A0Du, 0x68A11F9E62FE4448u, 0x68D56785FBBDD55Au, 0x690AC1677AAD4AB0u,
        0x6940B8E0ACAC4EAEu, 0x6974E718D7D7625Au, 0x69AA20DF0DCD3AF0u, 0x69E0548B68A044D6u, 0x6A1469AE42C8560Cu,
        0x6A498419D37A6B8Fu, 0x6A7FE52048590672u, 0x6AB3EF342D37A407u, 0x6AE8EB0138858D09u, 0x6B1F25C186A6F04Cu,
        0x6B537798F428562Fu, 0x6B88557F31326BBBu, 0x6BBE6ADEFD7F06AAu, 0x6BF302CB5E6F642Au, 0x6C27C37E360B3D35u,
        0x6C5DB45DC38E0C82u, 0x6C9290BA9A38C7D1u, 0x6CC734E940C6F9C5u, 0x6CFD022390F8B837u, 0x6D3221563A9B7322u,
        0x6D66A9ABC9424FEBu, 0x6D9C5416BB92E3E6u, 0x6DD1B48E353BCE6Fu, 0x6E0621B1C28AC20Bu, 0x6E3BAA1E332D728Eu,
        0x6E714A52DFFC6799u, 0x6EA59CE797FB817Fu, 0x6EDB04217DFA61DFu, 0x6F10E294EEBC7D2Bu, 0x6F451B3A2A6B9C76u,
        0x6F7A6208B5068394u, 0x6FB07D457124123Cu, 0x6FE49C96CD6D16CBu, 0x7019C3BC80C85C7Eu, 0x70501A55D07D39CFu,
        0x708420EB449C8842u, 0x70B9292615C3AA53u, 0x70EF736F9B3494E8u, 0x7123A825C100DD11u, 0x7158922F31411455u,
        0x718EB6BAFD91596Bu, 0x71C33234DE7AD7E2u, 0x71F7FEC216198DDBu, 0x722DFE729B9FF152u, 0x7262BF07A143F6D3u,
        0x72976EC98994F488u, 0x72CD4A7BEBFA31AAu, 0x73024E8D737C5F0Au, 0x7336E230D05B76CDu, 0x736C9ABD04725480u,
        0x73A1E0B622C774D0u, 0x73D658E3AB795204u, 0x740BEF1C9657A685u, 0x74417571DDF6C813u, 0x7475D2CE55747A18u,
        0x74AB4781EAD1989Eu, 0x74E10CB132C2FF63u, 0x75154FDD7F73BF3Bu, 0x754AA3D4DF50AF0Au, 0x7580A6650B926D66u,
        0x75B4CFFE4E7708C0u, 0x75EA03FDE214CAF0u, 0x7620427EAD4CFED6u, 0x7654531E58A03E8Bu, 0x768967E5EEC84E2Eu,
        0x76BFC1DF6A7A61BAu, 0x76F3D92BA28C7D14u, 0x7728CF768B2F9C59u, 0x775F03542DFB8370u, 0x779362149CBD3226u,
        0x77C83A99C3EC7EAFu, 0x77FE494034E79E5Bu, 0x7832EDC82110C2F9u, 0x7867A93A2954F3B7u, 0x789D9388B3AA30A5u,
        0x78D27C35704A5E67u, 0x79071B42CC5CF601u, 0x793CE2137F743381u, 0x79720D4C2FA8A030u, 0x79A6909F3B92C83Du,
        0x79DC34C70A777A4Cu, 0x7A11A0FC668AAC6Fu, 0x7A46093B802D578Bu, 0x7A7B8B8A6038AD6Eu, 0x7AB137367C236C65u,
        0x7AE585041B2C477Eu, 0x7B1AE64521F7595Eu, 0x7B50CFEB353A97DAu, 0x7B8503E602893DD1u, 0x7BBA44DF832B8D45u,
        0x7BF06B0BB1FB384Bu, 0x7C2485CE9E7A065Eu, 0x7C59A742461887F6u, 0x7C9008896BCF54F9u, 0x7CC40AABC6C32A38u,
        0x7CF90D56B873F4C6u, 0x7D2F50AC6690F1F8u, 0x7D63926BC01A973Bu, 0x7D987706B0213D09u, 0x7DCE94C85C298C4Cu,
        0x7E031CFD3999F7AFu, 0x7E37E43C8800759Bu, 0x7E6DDD4BAA009302u, 0x7EA2AA4F4A405BE1u, 0x7ED754E31CD072D9u,
        0x7F0D2A1BE4048F90u, 0x7F423A516E82D9BAu, 0x7F76C8E5CA239028u, 0x7FAC7B1F3CAC7433u, 0x7FE1CCF385EBC89Fu,
        0x7FEFFFFFFFFFFFFFu};
};

template <class _Floating>
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
to_chars_result _Floating_to_chars_general_precision(
    char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept {

    using _Traits    = _Floating_type_traits<_Floating>;
    using _Uint_type = typename _Traits::_Uint_type;

    const _Uint_type _Uint_value = _VSTD::bit_cast<_Uint_type>(_Value);

    if (_Uint_value == 0) { // zero detected; write "0" and return; _Precision is irrelevant due to zero-trimming
        if (_First == _Last) {
            return {_Last, errc::value_too_large};
        }

        *_First++ = '0';

        return {_First, errc{}};
    }

    // C11 7.21.6.1 "The fprintf function"/5:
    // "A negative precision argument is taken as if the precision were omitted."
    // /8: "g,G [...] Let P equal the precision if nonzero, 6 if the precision is omitted,
    // or 1 if the precision is zero."

    // Performance note: It's possible to rewrite this for branchless codegen,
    // but profiling will be necessary to determine whether that's faster.
    if (_Precision < 0) {
        _Precision = 6;
    } else if (_Precision == 0) {
        _Precision = 1;
    } else if (_Precision < 1'000'000) {
        // _Precision is ok.
    } else {
        // Avoid integer overflow.
        // Due to general notation's zero-trimming behavior, we can simply clamp _Precision.
        // This is further clamped below.
        _Precision = 1'000'000;
    }

    // _Precision is now the Standard's P.

    // /8: "Then, if a conversion with style E would have an exponent of X:
    // - if P > X >= -4, the conversion is with style f (or F) and precision P - (X + 1).
    // - otherwise, the conversion is with style e (or E) and precision P - 1."

    // /8: "Finally, [...] any trailing zeros are removed from the fractional portion of the result
    // and the decimal-point character is removed if there is no fractional portion remaining."

    using _Tables = _General_precision_tables<_Floating>;

    const _Uint_type* _Table_begin;
    const _Uint_type* _Table_end;

    if (_Precision <= _Tables::_Max_special_P) {
        _Table_begin = _Tables::_Special_X_table + (_Precision - 1) * (_Precision + 10) / 2;
        _Table_end   = _Table_begin + _Precision + 5;
    } else {
        _Table_begin = _Tables::_Ordinary_X_table;
        _Table_end   = _Table_begin + _VSTD::min(_Precision, _Tables::_Max_P) + 5;
    }

    // Profiling indicates that linear search is faster than binary search for small tables.
    // Performance note: lambda captures may have a small performance cost.
    const _Uint_type* const _Table_lower_bound = [=] {
        if constexpr (!_IsSame<_Floating, float>::value) {
            if (_Precision > 155) { // threshold determined via profiling
                return _VSTD::lower_bound(_Table_begin, _Table_end, _Uint_value, less{});
            }
        }

        return _VSTD::find_if(_Table_begin, _Table_end, [=](const _Uint_type _Elem) { return _Uint_value <= _Elem; });
    }();

    const ptrdiff_t _Table_index     = _Table_lower_bound - _Table_begin;
    const int _Scientific_exponent_X = static_cast<int>(_Table_index - 5);
    const bool _Use_fixed_notation   = _Precision > _Scientific_exponent_X && _Scientific_exponent_X >= -4;

    // Performance note: it might (or might not) be faster to modify Ryu Printf to perform zero-trimming.
    // Such modifications would involve a fairly complicated state machine (notably, both '0' and '9' digits would
    // need to be buffered, due to rounding), and that would have performance costs due to increased branching.
    // Here, we're using a simpler approach: writing into a local buffer, manually zero-trimming, and then copying into
    // the output range. The necessary buffer size is reasonably small, the zero-trimming logic is simple and fast,
    // and the final copying is also fast.

    constexpr int _Max_output_length =
        _IsSame<_Floating, float>::value ? 117 : 773; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022
    constexpr int _Max_fixed_precision =
        _IsSame<_Floating, float>::value ? 37 : 66; // cases: 0x1.fffffep-14f and 0x1.fffffffffffffp-14
    constexpr int _Max_scientific_precision =
        _IsSame<_Floating, float>::value ? 111 : 766; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022

    // Note that _Max_output_length is determined by scientific notation and is more than enough for fixed notation.
    // 0x1.fffffep+127f is 39 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 77.
    // 0x1.fffffffffffffp+1023 is 309 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 376.

    char _Buffer[_Max_output_length];
    const char* const _Significand_first = _Buffer; // e.g. "1.234"
    const char* _Significand_last        = nullptr;
    const char* _Exponent_first          = nullptr; // e.g. "e-05"
    const char* _Exponent_last           = nullptr;
    int _Effective_precision; // number of digits printed after the decimal point, before trimming

    // Write into the local buffer.
    // Clamping _Effective_precision allows _Buffer to be as small as possible, and increases efficiency.
    if (_Use_fixed_notation) {
        _Effective_precision = _VSTD::min(_Precision - (_Scientific_exponent_X + 1), _Max_fixed_precision);
        const to_chars_result _Buf_result =
            _Floating_to_chars_fixed_precision(_Buffer, _VSTD::end(_Buffer), _Value, _Effective_precision);
        _LIBCPP_ASSERT(_Buf_result.ec == errc{}, "");
        _Significand_last = _Buf_result.ptr;
    } else {
        _Effective_precision = _VSTD::min(_Precision - 1, _Max_scientific_precision);
        const to_chars_result _Buf_result =
            _Floating_to_chars_scientific_precision(_Buffer, _VSTD::end(_Buffer), _Value, _Effective_precision);
        _LIBCPP_ASSERT(_Buf_result.ec == errc{}, "");
        _Significand_last = _VSTD::find(_Buffer, _Buf_result.ptr, 'e');
        _Exponent_first   = _Significand_last;
        _Exponent_last    = _Buf_result.ptr;
    }

    // If we printed a decimal point followed by digits, perform zero-trimming.
    if (_Effective_precision > 0) {
        while (_Significand_last[-1] == '0') { // will stop at '.' or a nonzero digit
            --_Significand_last;
        }

        if (_Significand_last[-1] == '.') {
            --_Significand_last;
        }
    }

    // Copy the significand to the output range.
    const ptrdiff_t _Significand_distance = _Significand_last - _Significand_first;
    if (_Last - _First < _Significand_distance) {
        return {_Last, errc::value_too_large};
    }
    _VSTD::memcpy(_First, _Significand_first, static_cast<size_t>(_Significand_distance));
    _First += _Significand_distance;

    // Copy the exponent to the output range.
    if (!_Use_fixed_notation) {
        const ptrdiff_t _Exponent_distance = _Exponent_last - _Exponent_first;
        if (_Last - _First < _Exponent_distance) {
            return {_Last, errc::value_too_large};
        }
        _VSTD::memcpy(_First, _Exponent_first, static_cast<size_t>(_Exponent_distance));
        _First += _Exponent_distance;
    }

    return {_First, errc{}};
}

enum class _Floating_to_chars_overload { _Plain, _Format_only, _Format_precision };

template <_Floating_to_chars_overload _Overload, class _Floating>
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
to_chars_result _Floating_to_chars(
    char* _First, char* const _Last, _Floating _Value, const chars_format _Fmt, const int _Precision) noexcept {

    if constexpr (_Overload == _Floating_to_chars_overload::_Plain) {
        _LIBCPP_ASSERT(_Fmt == chars_format{}, ""); // plain overload must pass chars_format{} internally
    } else {
        _LIBCPP_ASSERT(_Fmt == chars_format::general || _Fmt == chars_format::scientific || _Fmt == chars_format::fixed
                         || _Fmt == chars_format::hex,
            "invalid format in to_chars()");
    }

    using _Traits    = _Floating_type_traits<_Floating>;
    using _Uint_type = typename _Traits::_Uint_type;

    _Uint_type _Uint_value = _VSTD::bit_cast<_Uint_type>(_Value);

    const bool _Was_negative = (_Uint_value & _Traits::_Shifted_sign_mask) != 0;

    if (_Was_negative) { // sign bit detected; write minus sign and clear sign bit
        if (_First == _Last) {
            return {_Last, errc::value_too_large};
        }

        *_First++ = '-';

        _Uint_value &= ~_Traits::_Shifted_sign_mask;
        _Value = _VSTD::bit_cast<_Floating>(_Uint_value);
    }

    if ((_Uint_value & _Traits::_Shifted_exponent_mask) == _Traits::_Shifted_exponent_mask) {
        // inf/nan detected; write appropriate string and return
        const char* _Str;
        size_t _Len;

        const _Uint_type _Mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;

        if (_Mantissa == 0) {
            _Str = "inf";
            _Len = 3;
        } else if (_Was_negative && _Mantissa == _Traits::_Special_nan_mantissa_mask) {
            // When a NaN value has the sign bit set, the quiet bit set, and all other mantissa bits cleared,
            // the UCRT interprets it to mean "indeterminate", and indicates this by printing "-nan(ind)".
            _Str = "nan(ind)";
            _Len = 8;
        } else if ((_Mantissa & _Traits::_Special_nan_mantissa_mask) != 0) {
            _Str = "nan";
            _Len = 3;
        } else {
            _Str = "nan(snan)";
            _Len = 9;
        }

        if (_Last - _First < static_cast<ptrdiff_t>(_Len)) {
            return {_Last, errc::value_too_large};
        }

        _VSTD::memcpy(_First, _Str, _Len);

        return {_First + _Len, errc{}};
    }

    if constexpr (_Overload == _Floating_to_chars_overload::_Plain) {
        return _Floating_to_chars_ryu(_First, _Last, _Value, chars_format{});
    } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_only) {
        if (_Fmt == chars_format::hex) {
            return _Floating_to_chars_hex_shortest(_First, _Last, _Value);
        }

        return _Floating_to_chars_ryu(_First, _Last, _Value, _Fmt);
    } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_precision) {
        switch (_Fmt) {
        case chars_format::scientific:
            return _Floating_to_chars_scientific_precision(_First, _Last, _Value, _Precision);
        case chars_format::fixed:
            return _Floating_to_chars_fixed_precision(_First, _Last, _Value, _Precision);
        case chars_format::general:
            return _Floating_to_chars_general_precision(_First, _Last, _Value, _Precision);
        case chars_format::hex:
        default: // avoid MSVC warning C4715: not all control paths return a value
            return _Floating_to_chars_hex_precision(_First, _Last, _Value, _Precision);
        }
    }
}

// clang-format on

_LIBCPP_END_NAMESPACE_STD

#endif // _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H