1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define BTMP r5:4
#define BTMPH r5
#define BTMPL r4
#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6
#define ONE r9:8
#define S_ONE r8
#define S_ZERO r9
#define PP_HH r11:10
#define PP_HH_H r11
#define PP_HH_L r10
#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12
#define PP_LL r15:14
#define PP_LL_H r15
#define PP_LL_L r14
#define TMP r28
#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1024
#define MANTISSA_TO_INT_BIAS 52
// Some constant to adjust normalization amount in error code
// Amount to right shift the partial product to get to a denorm
#define FUDGE 5
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG
#define SR_ROUND_OFF 22
.text
.global __hexagon_muldf3
.type __hexagon_muldf3,@function
Q6_ALIAS(muldf3)
FAST_ALIAS(muldf3)
FAST2_ALIAS(muldf3)
.p2align 5
__hexagon_muldf3:
{
p0 = dfclass(A,#2)
p0 = dfclass(B,#2)
ATMP = combine(##0x40000000,#0)
}
{
ATMP = insert(A,#MANTBITS,#EXPBITS-1)
BTMP = asl(B,#EXPBITS-1)
TMP = #-BIAS
ONE = #1
}
{
PP_ODD = mpyu(BTMPL,ATMPH)
BTMP = insert(ONE,#2,#62)
}
// since we know that the MSB of the H registers is zero, we should never carry
// H <= 2^31-1. L <= 2^32-1. Therefore, HL <= 2^63-2^32-2^31+1
// Adding 2 HLs, we get 2^64-3*2^32+2 maximum.
// Therefore, we can add 3 2^32-1 values safely without carry. We only need one.
{
PP_LL = mpyu(ATMPL,BTMPL)
PP_ODD += mpyu(ATMPL,BTMPH)
}
{
PP_ODD += lsr(PP_LL,#32)
PP_HH = mpyu(ATMPH,BTMPH)
BTMP = combine(##BIAS+BIAS-4,#0)
}
{
PP_HH += lsr(PP_ODD,#32)
if (!p0) jump .Lmul_abnormal
p1 = cmp.eq(PP_LL_L,#0) // 64 lsb's 0?
p1 = cmp.eq(PP_ODD_L,#0) // 64 lsb's 0?
}
// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so
#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#define EXP10 r7:6
#define EXP1 r7
#define EXP0 r6
{
if (!p1) PP_HH_L = or(PP_HH_L,S_ONE)
EXP0 = extractu(AH,#EXPBITS,#HI_MANTBITS)
EXP1 = extractu(BH,#EXPBITS,#HI_MANTBITS)
}
{
PP_LL = neg(PP_HH)
EXP0 += add(TMP,EXP1)
TMP = xor(AH,BH)
}
{
if (!p2.new) PP_HH = PP_LL
p2 = cmp.gt(TMP,#-1)
p0 = !cmp.gt(EXP0,BTMPH)
p0 = cmp.gt(EXP0,BTMPL)
if (!p0.new) jump:nt .Lmul_ovf_unf
}
{
A = convert_d2df(PP_HH)
EXP0 = add(EXP0,#-BIAS-58)
}
{
AH += asl(EXP0,#HI_MANTBITS)
jumpr r31
}
.falign
.Lpossible_unf:
// We end up with a positive exponent
// But we may have rounded up to an exponent of 1.
// If the exponent is 1, if we rounded up to it
// we need to also raise underflow
// Fortunately, this is pretty easy to detect, we must have +/- 0x0010_0000_0000_0000
// And the PP should also have more than one bit set
//
// Note: ATMP should have abs(PP_HH)
// Note: BTMPL should have 0x7FEFFFFF
{
p0 = cmp.eq(AL,#0)
p0 = bitsclr(AH,BTMPL)
if (!p0.new) jumpr:t r31
BTMPH = #0x7fff
}
{
p0 = bitsset(ATMPH,BTMPH)
BTMPL = USR
BTMPH = #0x030
}
{
if (p0) BTMPL = or(BTMPL,BTMPH)
}
{
USR = BTMPL
}
{
p0 = dfcmp.eq(A,A)
jumpr r31
}
.falign
.Lmul_ovf_unf:
{
A = convert_d2df(PP_HH)
ATMP = abs(PP_HH) // take absolute value
EXP1 = add(EXP0,#-BIAS-58)
}
{
AH += asl(EXP1,#HI_MANTBITS)
EXP1 = extractu(AH,#EXPBITS,#HI_MANTBITS)
BTMPL = ##0x7FEFFFFF
}
{
EXP1 += add(EXP0,##-BIAS-58)
//BTMPH = add(clb(ATMP),#-2)
BTMPH = #0
}
{
p0 = cmp.gt(EXP1,##BIAS+BIAS-2) // overflow
if (p0.new) jump:nt .Lmul_ovf
}
{
p0 = cmp.gt(EXP1,#0)
if (p0.new) jump:nt .Lpossible_unf
BTMPH = sub(EXP0,BTMPH)
TMP = #63 // max amount to shift
}
// Underflow
//
// PP_HH has the partial product with sticky LSB.
// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so
// The exponent of PP_HH is in EXP1, which is non-positive (0 or negative)
// That's the exponent that happens after the normalization
//
// EXP0 has the exponent that, when added to the normalized value, is out of range.
//
// Strategy:
//
// * Shift down bits, with sticky bit, such that the bits are aligned according
// to the LZ count and appropriate exponent, but not all the way to mantissa
// field, keep around the last few bits.
// * Put a 1 near the MSB
// * Check the LSBs for inexact; if inexact also set underflow
// * Convert [u]d2df -- will correctly round according to rounding mode
// * Replace exponent field with zero
{
BTMPL = #0 // offset for extract
BTMPH = sub(#FUDGE,BTMPH) // amount to right shift
}
{
p3 = cmp.gt(PP_HH_H,#-1) // is it positive?
BTMPH = min(BTMPH,TMP) // Don't shift more than 63
PP_HH = ATMP
}
{
TMP = USR
PP_LL = extractu(PP_HH,BTMP)
}
{
PP_HH = asr(PP_HH,BTMPH)
BTMPL = #0x0030 // underflow flag
AH = insert(S_ZERO,#EXPBITS,#HI_MANTBITS)
}
{
p0 = cmp.gtu(ONE,PP_LL) // Did we extract all zeros?
if (!p0.new) PP_HH_L = or(PP_HH_L,S_ONE) // add sticky bit
PP_HH_H = setbit(PP_HH_H,#HI_MANTBITS+3) // Add back in a bit so we can use convert instruction
}
{
PP_LL = neg(PP_HH)
p1 = bitsclr(PP_HH_L,#0x7) // Are the LSB's clear?
if (!p1.new) TMP = or(BTMPL,TMP) // If not, Inexact+Underflow
}
{
if (!p3) PP_HH = PP_LL
USR = TMP
}
{
A = convert_d2df(PP_HH) // Do rounding
p0 = dfcmp.eq(A,A) // realize exception
}
{
AH = insert(S_ZERO,#EXPBITS-1,#HI_MANTBITS+1) // Insert correct exponent
jumpr r31
}
.falign
.Lmul_ovf:
// We get either max finite value or infinity. Either way, overflow+inexact
{
TMP = USR
ATMP = combine(##0x7fefffff,#-1) // positive max finite
A = PP_HH
}
{
PP_LL_L = extractu(TMP,#2,#SR_ROUND_OFF) // rounding bits
TMP = or(TMP,#0x28) // inexact + overflow
BTMP = combine(##0x7ff00000,#0) // positive infinity
}
{
USR = TMP
PP_LL_L ^= lsr(AH,#31) // Does sign match rounding?
TMP = PP_LL_L // unmodified rounding mode
}
{
p0 = !cmp.eq(TMP,#1) // If not round-to-zero and
p0 = !cmp.eq(PP_LL_L,#2) // Not rounding the other way,
if (p0.new) ATMP = BTMP // we should get infinity
p0 = dfcmp.eq(A,A) // Realize FP exception if enabled
}
{
A = insert(ATMP,#63,#0) // insert inf/maxfinite, leave sign
jumpr r31
}
.Lmul_abnormal:
{
ATMP = extractu(A,#63,#0) // strip off sign
BTMP = extractu(B,#63,#0) // strip off sign
}
{
p3 = cmp.gtu(ATMP,BTMP)
if (!p3.new) A = B // sort values
if (!p3.new) B = A // sort values
}
{
// Any NaN --> NaN, possibly raise invalid if sNaN
p0 = dfclass(A,#0x0f) // A not NaN?
if (!p0.new) jump:nt .Linvalid_nan
if (!p3) ATMP = BTMP
if (!p3) BTMP = ATMP
}
{
// Infinity * nonzero number is infinity
p1 = dfclass(A,#0x08) // A is infinity
p1 = dfclass(B,#0x0e) // B is nonzero
}
{
// Infinity * zero --> NaN, raise invalid
// Other zeros return zero
p0 = dfclass(A,#0x08) // A is infinity
p0 = dfclass(B,#0x01) // B is zero
}
{
if (p1) jump .Ltrue_inf
p2 = dfclass(B,#0x01)
}
{
if (p0) jump .Linvalid_zeroinf
if (p2) jump .Ltrue_zero // so return zero
TMP = ##0x7c000000
}
// We are left with a normal or subnormal times a subnormal. A > B
// If A and B are both very small (exp(a) < BIAS-MANTBITS),
// we go to a single sticky bit, which we can round easily.
// If A and B might multiply to something bigger, decrease A exponent and increase
// B exponent and try again
{
p0 = bitsclr(AH,TMP)
if (p0.new) jump:nt .Lmul_tiny
}
{
TMP = cl0(BTMP)
}
{
TMP = add(TMP,#-EXPBITS)
}
{
BTMP = asl(BTMP,TMP)
}
{
B = insert(BTMP,#63,#0)
AH -= asl(TMP,#HI_MANTBITS)
}
jump __hexagon_muldf3
.Lmul_tiny:
{
TMP = USR
A = xor(A,B) // get sign bit
}
{
TMP = or(TMP,#0x30) // Inexact + Underflow
A = insert(ONE,#63,#0) // put in rounded up value
BTMPH = extractu(TMP,#2,#SR_ROUND_OFF) // get rounding mode
}
{
USR = TMP
p0 = cmp.gt(BTMPH,#1) // Round towards pos/neg inf?
if (!p0.new) AL = #0 // If not, zero
BTMPH ^= lsr(AH,#31) // rounding my way --> set LSB
}
{
p0 = cmp.eq(BTMPH,#3) // if rounding towards right inf
if (!p0.new) AL = #0 // don't go to zero
jumpr r31
}
.Linvalid_zeroinf:
{
TMP = USR
}
{
A = #-1
TMP = or(TMP,#2)
}
{
USR = TMP
}
{
p0 = dfcmp.uo(A,A) // force exception if enabled
jumpr r31
}
.Linvalid_nan:
{
p0 = dfclass(B,#0x0f) // if B is not NaN
TMP = convert_df2sf(A) // will generate invalid if sNaN
if (p0.new) B = A // make it whatever A is
}
{
BL = convert_df2sf(B) // will generate invalid if sNaN
A = #-1
jumpr r31
}
.falign
.Ltrue_zero:
{
A = B
B = A
}
.Ltrue_inf:
{
BH = extract(BH,#1,#31)
}
{
AH ^= asl(BH,#31)
jumpr r31
}
END(__hexagon_muldf3)
#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH
|