1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
//===-- fp_div_impl.inc - Floating point division -----------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements soft-float division with the IEEE-754 default
// rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#include "fp_lib.h"
// The __divXf3__ function implements Newton-Raphson floating point division.
// It uses 3 iterations for float32, 4 for float64 and 5 for float128,
// respectively. Due to number of significant bits being roughly doubled
// every iteration, the two modes are supported: N full-width iterations (as
// it is done for float32 by default) and (N-1) half-width iteration plus one
// final full-width iteration. It is expected that half-width integer
// operations (w.r.t rep_t size) can be performed faster for some hardware but
// they require error estimations to be computed separately due to larger
// computational errors caused by truncating intermediate results.
// Half the bit-size of rep_t
#define HW (typeWidth / 2)
// rep_t-sized bitmask with lower half of bits set to ones
#define loMask (REP_C(-1) >> HW)
#if NUMBER_OF_FULL_ITERATIONS < 1
#error At least one full iteration is required
#endif
static __inline fp_t __divXf3__(fp_t a, fp_t b) {
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent - 1U >= maxExponent - 1U ||
bExponent - 1U >= maxExponent - 1U) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep)
return fromRep(toRep(a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep)
return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep)
return fromRep(qnanRep);
// infinity / anything else = +/- infinity
else
return fromRep(aAbs | quotientSign);
}
// anything else / infinity = +/- 0
if (bAbs == infRep)
return fromRep(quotientSign);
if (!aAbs) {
// zero / zero = NaN
if (!bAbs)
return fromRep(qnanRep);
// zero / anything else = +/- zero
else
return fromRep(quotientSign);
}
// anything else / zero = +/- infinity
if (!bAbs)
return fromRep(infRep | quotientSign);
// One or both of a or b is denormal. The other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit)
scale += normalize(&aSignificand);
if (bAbs < implicitBit)
scale -= normalize(&bSignificand);
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
aSignificand |= implicitBit;
bSignificand |= implicitBit;
int writtenExponent = (aExponent - bExponent + scale) + exponentBias;
const rep_t b_UQ1 = bSignificand << (typeWidth - significandBits - 1);
// Align the significand of b as a UQ1.(n-1) fixed-point number in the range
// [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
// polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
// The max error for this approximation is achieved at endpoints, so
// abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
// which is about 4.5 bits.
// The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
// Then, refine the reciprocal estimate using a quadratically converging
// Newton-Raphson iteration:
// x_{n+1} = x_n * (2 - x_n * b)
//
// Let b be the original divisor considered "in infinite precision" and
// obtained from IEEE754 representation of function argument (with the
// implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
// UQ1.(W-1).
//
// Let b_hw be an infinitely precise number obtained from the highest (HW-1)
// bits of divisor significand (with the implicit bit set). Corresponds to
// half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
// version of b_UQ1.
//
// Let e_n := x_n - 1/b_hw
// E_n := x_n - 1/b
// abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
// = abs(e_n) + (b - b_hw) / (b*b_hw)
// <= abs(e_n) + 2 * 2^-HW
// rep_t-sized iterations may be slower than the corresponding half-width
// variant depending on the handware and whether single/double/quad precision
// is selected.
// NB: Using half-width iterations increases computation errors due to
// rounding, so error estimations have to be computed taking the selected
// mode into account!
#if NUMBER_OF_HALF_ITERATIONS > 0
// Starting with (n-1) half-width iterations
const half_rep_t b_UQ1_hw = bSignificand >> (significandBits + 1 - HW);
// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
// with W0 being either 16 or 32 and W0 <= HW.
// That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
// b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
#if defined(SINGLE_PRECISION)
// Use 16-bit initial estimation in case we are using half-width iterations
// for float32 division. This is expected to be useful for some 16-bit
// targets. Not used by default as it requires performing more work during
// rounding and would hardly help on regular 32- or 64-bit targets.
const half_rep_t C_hw = HALF_REP_C(0x7504);
#else
// HW is at least 32. Shifting into the highest bits if needed.
const half_rep_t C_hw = HALF_REP_C(0x7504F333) << (HW - 32);
#endif
// b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
// so x0 fits to UQ0.HW without wrapping.
half_rep_t x_UQ0_hw = C_hw - (b_UQ1_hw /* exact b_hw/2 as UQ0.HW */);
// An e_0 error is comprised of errors due to
// * x0 being an inherently imprecise first approximation of 1/b_hw
// * C_hw being some (irrational) number **truncated** to W0 bits
// Please note that e_0 is calculated against the infinitely precise
// reciprocal of b_hw (that is, **truncated** version of b).
//
// e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
// By construction, 1 <= b < 2
// f(x) = x * (2 - b*x) = 2*x - b*x^2
// f'(x) = 2 * (1 - b*x)
//
// On the [0, 1] interval, f(0) = 0,
// then it increses until f(1/b) = 1 / b, maximum on (0, 1),
// then it decreses to f(1) = 2 - b
//
// Let g(x) = x - f(x) = b*x^2 - x.
// On (0, 1/b), g(x) < 0 <=> f(x) > x
// On (1/b, 1], g(x) > 0 <=> f(x) < x
//
// For half-width iterations, b_hw is used instead of b.
REPEAT_N_TIMES(NUMBER_OF_HALF_ITERATIONS, {
// corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
// of corr_UQ1_hw.
// "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
// On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
// no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
// expected to be strictly positive because b_UQ1_hw has its highest bit set
// and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
half_rep_t corr_UQ1_hw = 0 - ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW);
// Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
// obtaining an UQ1.(HW-1) number and proving its highest bit could be
// considered to be 0 to be able to represent it in UQ0.HW.
// From the above analysis of f(x), if corr_UQ1_hw would be represented
// without any intermediate loss of precision (that is, in twice_rep_t)
// x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
// less otherwise. On the other hand, to obtain [1.]000..., one have to pass
// 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
// to 1.0 being not representable as UQ0.HW).
// The fact corr_UQ1_hw was virtually round up (due to result of
// multiplication being **first** truncated, then negated - to improve
// error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
x_UQ0_hw = (rep_t)x_UQ0_hw * corr_UQ1_hw >> (HW - 1);
// Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
// representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
// any number of iterations, so just subtract 2 from the reciprocal
// approximation after last iteration.
// In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
// corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
// = 1 - e_n * b_hw + 2*eps1
// x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
// = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
// = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
// e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
// = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
// \------ >0 -------/ \-- >0 ---/
// abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
})
// For initial half-width iterations, U = 2^-HW
// Let abs(e_n) <= u_n * U,
// then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
// u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
// Account for possible overflow (see above). For an overflow to occur for the
// first time, for "ideal" corr_UQ1_hw (that is, without intermediate
// truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
// value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
// be not below that value (see g(x) above), so it is safe to decrement just
// once after the final iteration. On the other hand, an effective value of
// divisor changes after this point (from b_hw to b), so adjust here.
x_UQ0_hw -= 1U;
rep_t x_UQ0 = (rep_t)x_UQ0_hw << HW;
x_UQ0 -= 1U;
#else
// C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
const rep_t C = REP_C(0x7504F333) << (typeWidth - 32);
rep_t x_UQ0 = C - b_UQ1;
// E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
#endif
// Error estimations for full-precision iterations are calculated just
// as above, but with U := 2^-W and taking extra decrementing into account.
// We need at least one such iteration.
#ifdef USE_NATIVE_FULL_ITERATIONS
REPEAT_N_TIMES(NUMBER_OF_FULL_ITERATIONS, {
rep_t corr_UQ1 = 0 - ((twice_rep_t)x_UQ0 * b_UQ1 >> typeWidth);
x_UQ0 = (twice_rep_t)x_UQ0 * corr_UQ1 >> (typeWidth - 1);
})
#else
#if NUMBER_OF_FULL_ITERATIONS != 1
#error Only a single emulated full iteration is supported
#endif
#if !(NUMBER_OF_HALF_ITERATIONS > 0)
// Cannot normally reach here: only one full-width iteration is requested and
// the total number of iterations should be at least 3 even for float32.
#error Check NUMBER_OF_HALF_ITERATIONS, NUMBER_OF_FULL_ITERATIONS and USE_NATIVE_FULL_ITERATIONS.
#endif
// Simulating operations on a twice_rep_t to perform a single final full-width
// iteration. Using ad-hoc multiplication implementations to take advantage
// of particular structure of operands.
rep_t blo = b_UQ1 & loMask;
// x_UQ0 = x_UQ0_hw * 2^HW - 1
// x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
//
// <--- higher half ---><--- lower half --->
// [x_UQ0_hw * b_UQ1_hw]
// + [ x_UQ0_hw * blo ]
// - [ b_UQ1 ]
// = [ result ][.... discarded ...]
rep_t corr_UQ1 = 0U - ( (rep_t)x_UQ0_hw * b_UQ1_hw
+ ((rep_t)x_UQ0_hw * blo >> HW)
- REP_C(1)); // account for *possible* carry
rep_t lo_corr = corr_UQ1 & loMask;
rep_t hi_corr = corr_UQ1 >> HW;
// x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
x_UQ0 = ((rep_t)x_UQ0_hw * hi_corr << 1)
+ ((rep_t)x_UQ0_hw * lo_corr >> (HW - 1))
- REP_C(2); // 1 to account for the highest bit of corr_UQ1 can be 1
// 1 to account for possible carry
// Just like the case of half-width iterations but with possibility
// of overflowing by one extra Ulp of x_UQ0.
x_UQ0 -= 1U;
// ... and then traditional fixup by 2 should work
// On error estimation:
// abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
// + (2^-HW + 2^-W))
// abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
// Then like for the half-width iterations:
// With 0 <= eps1, eps2 < 2^-W
// E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
// abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
// abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
#endif
// Finally, account for possible overflow, as explained above.
x_UQ0 -= 2U;
// u_n for different precisions (with N-1 half-width iterations):
// W0 is the precision of C
// u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
// Estimated with bc:
// define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
// define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
// define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
// define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
// | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
// u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
// u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
// u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
// u_3 | < 7.31 | | < 7.31 | < 27054456580
// u_4 | | | | < 80.4
// Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
// Add 2 to U_N due to final decrement.
#if defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 2 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(74)
#elif defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 0 && NUMBER_OF_FULL_ITERATIONS == 3
#define RECIPROCAL_PRECISION REP_C(10)
#elif defined(DOUBLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 3 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(220)
#elif defined(QUAD_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 4 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(13922)
#else
#error Invalid number of iterations
#endif
// Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
x_UQ0 -= RECIPROCAL_PRECISION;
// Now 1/b - (2*P) * 2^-W < x < 1/b
// FIXME Is x_UQ0 still >= 0.5?
rep_t quotient_UQ1, dummy;
wideMultiply(x_UQ0, aSignificand << 1, "ient_UQ1, &dummy);
// Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
// quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
// adjust it to be in [1.0, 2.0) as UQ1.SB.
rep_t residualLo;
if (quotient_UQ1 < (implicitBit << 1)) {
// Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
// effectively doubling its value as well as its error estimation.
residualLo = (aSignificand << (significandBits + 1)) - quotient_UQ1 * bSignificand;
writtenExponent -= 1;
aSignificand <<= 1;
} else {
// Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
// to UQ1.SB by right shifting by 1. Least significant bit is omitted.
quotient_UQ1 >>= 1;
residualLo = (aSignificand << significandBits) - quotient_UQ1 * bSignificand;
}
// NB: residualLo is calculated above for the normal result case.
// It is re-computed on denormal path that is expected to be not so
// performance-sensitive.
// Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
// Each NextAfter() increments the floating point value by at least 2^-SB
// (more, if exponent was incremented).
// Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
// q
// | | * | | | | |
// <---> 2^t
// | | | | | * | |
// q
// To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
// (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
// (8*P) * 2^-W < 0.5 * 2^-SB
// P < 2^(W-4-SB)
// Generally, for at most R NextAfter() to be enough,
// P < (2*R - 1) * 2^(W-4-SB)
// For f32 (0+3): 10 < 32 (OK)
// For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
// For f64: 220 < 256 (OK)
// For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
// If we have overflowed the exponent, return infinity
if (writtenExponent >= maxExponent)
return fromRep(infRep | quotientSign);
// Now, quotient_UQ1_SB <= the correctly-rounded result
// and may need taking NextAfter() up to 3 times (see error estimates above)
// r = a - b * q
rep_t absResult;
if (writtenExponent > 0) {
// Clear the implicit bit
absResult = quotient_UQ1 & significandMask;
// Insert the exponent
absResult |= (rep_t)writtenExponent << significandBits;
residualLo <<= 1;
} else {
// Prevent shift amount from being negative
if (significandBits + writtenExponent < 0)
return fromRep(quotientSign);
absResult = quotient_UQ1 >> (-writtenExponent + 1);
// multiplied by two to prevent shift amount to be negative
residualLo = (aSignificand << (significandBits + writtenExponent)) - (absResult * bSignificand << 1);
}
// Round
residualLo += absResult & 1; // tie to even
// The above line conditionally turns the below LT comparison into LTE
absResult += residualLo > bSignificand;
#if defined(QUAD_PRECISION) || (defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS > 0)
// Do not round Infinity to NaN
absResult += absResult < infRep && residualLo > (2 + 1) * bSignificand;
#endif
#if defined(QUAD_PRECISION)
absResult += absResult < infRep && residualLo > (4 + 1) * bSignificand;
#endif
return fromRep(absResult | quotientSign);
}
|