1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
|
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <roaring/containers/bitset.h>
#include <roaring/containers/containers.h>
#include <roaring/roaring_array.h>
#include <roaring/memory.h>
#ifdef __cplusplus
extern "C" { namespace roaring { namespace internal {
#endif
// Convention: [0,ra->size) all elements are initialized
// [ra->size, ra->allocation_size) is junk and contains nothing needing freeing
extern inline int32_t ra_get_size(const roaring_array_t *ra);
extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x);
extern inline container_t *ra_get_container_at_index(
const roaring_array_t *ra, uint16_t i,
uint8_t *typecode);
extern inline void ra_unshare_container_at_index(roaring_array_t *ra,
uint16_t i);
extern inline void ra_replace_key_and_container_at_index(
roaring_array_t *ra, int32_t i, uint16_t key,
container_t *c, uint8_t typecode);
extern inline void ra_set_container_at_index(
const roaring_array_t *ra, int32_t i,
container_t *c, uint8_t typecode);
static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) {
//
// Note: not implemented using C's realloc(), because the memory layout is
// Struct-of-Arrays vs. Array-of-Structs:
// https://github.com/RoaringBitmap/CRoaring/issues/256
if ( new_capacity == 0 ) {
roaring_free(ra->containers);
ra->containers = NULL;
ra->keys = NULL;
ra->typecodes = NULL;
ra->allocation_size = 0;
return true;
}
const size_t memoryneeded = new_capacity * (
sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t));
void *bigalloc = roaring_malloc(memoryneeded);
if (!bigalloc) return false;
void *oldbigalloc = ra->containers;
container_t **newcontainers = (container_t **)bigalloc;
uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity);
uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity);
assert((char *)(newtypecodes + new_capacity) ==
(char *)bigalloc + memoryneeded);
if(ra->size > 0) {
memcpy(newcontainers, ra->containers, sizeof(container_t *) * ra->size);
memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size);
memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size);
}
ra->containers = newcontainers;
ra->keys = newkeys;
ra->typecodes = newtypecodes;
ra->allocation_size = new_capacity;
roaring_free(oldbigalloc);
return true;
}
bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) {
if (!new_ra) return false;
ra_init(new_ra);
// Containers hold 64Ki elements, so 64Ki containers is enough to hold `0x10000 * 0x10000` (all 2^32) elements
if (cap > 0x10000) {
cap = 0x10000;
}
if(cap > 0) {
void *bigalloc = roaring_malloc(cap *
(sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t)));
if( bigalloc == NULL ) return false;
new_ra->containers = (container_t **)bigalloc;
new_ra->keys = (uint16_t *)(new_ra->containers + cap);
new_ra->typecodes = (uint8_t *)(new_ra->keys + cap);
// Narrowing is safe because of above check
new_ra->allocation_size = (int32_t)cap;
}
return true;
}
int ra_shrink_to_fit(roaring_array_t *ra) {
int savings = (ra->allocation_size - ra->size) *
(sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t));
if (!realloc_array(ra, ra->size)) {
return 0;
}
ra->allocation_size = ra->size;
return savings;
}
void ra_init(roaring_array_t *new_ra) {
if (!new_ra) { return; }
new_ra->keys = NULL;
new_ra->containers = NULL;
new_ra->typecodes = NULL;
new_ra->allocation_size = 0;
new_ra->size = 0;
new_ra->flags = 0;
}
bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
bool copy_on_write) {
ra_clear_containers(dest); // we are going to overwrite them
if (source->size == 0) { // Note: can't call memcpy(NULL), even w/size
dest->size = 0; // <--- This is important.
return true; // output was just cleared, so they match
}
if (dest->allocation_size < source->size) {
if (!realloc_array(dest, source->size)) {
return false;
}
}
dest->size = source->size;
memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
// we go through the containers, turning them into shared containers...
if (copy_on_write) {
for (int32_t i = 0; i < dest->size; ++i) {
source->containers[i] = get_copy_of_container(
source->containers[i], &source->typecodes[i], copy_on_write);
}
// we do a shallow copy to the other bitmap
memcpy(dest->containers, source->containers,
dest->size * sizeof(container_t *));
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
} else {
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
for (int32_t i = 0; i < dest->size; i++) {
dest->containers[i] =
container_clone(source->containers[i], source->typecodes[i]);
if (dest->containers[i] == NULL) {
for (int32_t j = 0; j < i; j++) {
container_free(dest->containers[j], dest->typecodes[j]);
}
ra_clear_without_containers(dest);
return false;
}
}
}
return true;
}
void ra_clear_containers(roaring_array_t *ra) {
for (int32_t i = 0; i < ra->size; ++i) {
container_free(ra->containers[i], ra->typecodes[i]);
}
}
void ra_reset(roaring_array_t *ra) {
ra_clear_containers(ra);
ra->size = 0;
ra_shrink_to_fit(ra);
}
void ra_clear_without_containers(roaring_array_t *ra) {
roaring_free(ra->containers); // keys and typecodes are allocated with containers
ra->size = 0;
ra->allocation_size = 0;
ra->containers = NULL;
ra->keys = NULL;
ra->typecodes = NULL;
}
void ra_clear(roaring_array_t *ra) {
ra_clear_containers(ra);
ra_clear_without_containers(ra);
}
bool extend_array(roaring_array_t *ra, int32_t k) {
int32_t desired_size = ra->size + k;
const int32_t max_containers = 65536;
assert(desired_size <= max_containers);
if (desired_size > ra->allocation_size) {
int32_t new_capacity =
(ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4;
if (new_capacity > max_containers) {
new_capacity = max_containers;
}
return realloc_array(ra, new_capacity);
}
return true;
}
void ra_append(
roaring_array_t *ra, uint16_t key,
container_t *c, uint8_t typecode
){
extend_array(ra, 1);
const int32_t pos = ra->size;
ra->keys[pos] = key;
ra->containers[pos] = c;
ra->typecodes[pos] = typecode;
ra->size++;
}
void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t index, bool copy_on_write) {
extend_array(ra, 1);
const int32_t pos = ra->size;
// old contents is junk not needing freeing
ra->keys[pos] = sa->keys[index];
// the shared container will be in two bitmaps
if (copy_on_write) {
sa->containers[index] = get_copy_of_container(
sa->containers[index], &sa->typecodes[index], copy_on_write);
ra->containers[pos] = sa->containers[index];
ra->typecodes[pos] = sa->typecodes[index];
} else {
ra->containers[pos] =
container_clone(sa->containers[index], sa->typecodes[index]);
ra->typecodes[pos] = sa->typecodes[index];
}
ra->size++;
}
void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t stopping_key, bool copy_on_write) {
for (int32_t i = 0; i < sa->size; ++i) {
if (sa->keys[i] >= stopping_key) break;
ra_append_copy(ra, sa, i, copy_on_write);
}
}
void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
int32_t start_index, int32_t end_index,
bool copy_on_write) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
if (copy_on_write) {
sa->containers[i] = get_copy_of_container(
sa->containers[i], &sa->typecodes[i], copy_on_write);
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
} else {
ra->containers[pos] =
container_clone(sa->containers[i], sa->typecodes[i]);
ra->typecodes[pos] = sa->typecodes[i];
}
ra->size++;
}
}
void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t before_start, bool copy_on_write) {
int start_location = ra_get_index(sa, before_start);
if (start_location >= 0)
++start_location;
else
start_location = -start_location - 1;
ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write);
}
void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
int32_t start_index, int32_t end_index) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
ra->size++;
}
}
void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
int32_t start_index, int32_t end_index,
bool copy_on_write) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
if (copy_on_write) {
sa->containers[i] = get_copy_of_container(
sa->containers[i], &sa->typecodes[i], copy_on_write);
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
} else {
ra->containers[pos] =
container_clone(sa->containers[i], sa->typecodes[i]);
ra->typecodes[pos] = sa->typecodes[i];
}
ra->size++;
}
}
container_t *ra_get_container(
roaring_array_t *ra, uint16_t x, uint8_t *typecode
){
int i = binarySearch(ra->keys, (int32_t)ra->size, x);
if (i < 0) return NULL;
*typecode = ra->typecodes[i];
return ra->containers[i];
}
extern inline container_t *ra_get_container_at_index(
const roaring_array_t *ra, uint16_t i,
uint8_t *typecode);
extern inline uint16_t ra_get_key_at_index(const roaring_array_t *ra,
uint16_t i);
extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x);
extern inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
int32_t pos);
// everything skipped over is freed
int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos) {
while (pos < ra->size && ra->keys[pos] < x) {
container_free(ra->containers[pos], ra->typecodes[pos]);
++pos;
}
return pos;
}
void ra_insert_new_key_value_at(
roaring_array_t *ra, int32_t i, uint16_t key,
container_t *c, uint8_t typecode
){
extend_array(ra, 1);
// May be an optimization opportunity with DIY memmove
memmove(&(ra->keys[i + 1]), &(ra->keys[i]),
sizeof(uint16_t) * (ra->size - i));
memmove(&(ra->containers[i + 1]), &(ra->containers[i]),
sizeof(container_t *) * (ra->size - i));
memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]),
sizeof(uint8_t) * (ra->size - i));
ra->keys[i] = key;
ra->containers[i] = c;
ra->typecodes[i] = typecode;
ra->size++;
}
// note: Java routine set things to 0, enabling GC.
// Java called it "resize" but it was always used to downsize.
// Allowing upsize would break the conventions about
// valid containers below ra->size.
void ra_downsize(roaring_array_t *ra, int32_t new_length) {
assert(new_length <= ra->size);
ra->size = new_length;
}
void ra_remove_at_index(roaring_array_t *ra, int32_t i) {
memmove(&(ra->containers[i]), &(ra->containers[i + 1]),
sizeof(container_t *) * (ra->size - i - 1));
memmove(&(ra->keys[i]), &(ra->keys[i + 1]),
sizeof(uint16_t) * (ra->size - i - 1));
memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]),
sizeof(uint8_t) * (ra->size - i - 1));
ra->size--;
}
void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) {
container_free(ra->containers[i], ra->typecodes[i]);
ra_remove_at_index(ra, i);
}
// used in inplace andNot only, to slide left the containers from
// the mutated RoaringBitmap that are after the largest container of
// the argument RoaringBitmap. In use it should be followed by a call to
// downsize.
//
void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
uint32_t new_begin) {
assert(begin <= end);
assert(new_begin < begin);
const int range = end - begin;
// We ensure to previously have freed overwritten containers
// that are not copied elsewhere
memmove(&(ra->containers[new_begin]), &(ra->containers[begin]),
sizeof(container_t *) * range);
memmove(&(ra->keys[new_begin]), &(ra->keys[begin]),
sizeof(uint16_t) * range);
memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]),
sizeof(uint8_t) * range);
}
void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) {
if (distance > 0) {
extend_array(ra, distance);
}
int32_t srcpos = ra->size - count;
int32_t dstpos = srcpos + distance;
memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]),
sizeof(uint16_t) * count);
memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]),
sizeof(container_t *) * count);
memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]),
sizeof(uint8_t) * count);
ra->size += distance;
}
void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) {
size_t ctr = 0;
for (int32_t i = 0; i < ra->size; ++i) {
int num_added = container_to_uint32_array(
ans + ctr, ra->containers[i], ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
ctr += num_added;
}
}
bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans) {
size_t ctr = 0;
size_t dtr = 0;
size_t t_limit = 0;
bool first = false;
size_t first_skip = 0;
uint32_t *t_ans = NULL;
size_t cur_len = 0;
for (int i = 0; i < ra->size; ++i) {
const container_t *c = container_unwrap_shared(
ra->containers[i], &ra->typecodes[i]);
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE:
t_limit = (const_CAST_bitset(c))->cardinality;
break;
case ARRAY_CONTAINER_TYPE:
t_limit = (const_CAST_array(c))->cardinality;
break;
case RUN_CONTAINER_TYPE:
t_limit = run_container_cardinality(const_CAST_run(c));
break;
}
if (ctr + t_limit - 1 >= offset && ctr < offset + limit){
if (!first){
//first_skip = t_limit - (ctr + t_limit - offset);
first_skip = offset - ctr;
first = true;
t_ans = (uint32_t *)roaring_malloc(sizeof(*t_ans) * (first_skip + limit));
if(t_ans == NULL) {
return false;
}
memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit)) ;
cur_len = first_skip + limit;
}
if (dtr + t_limit > cur_len){
uint32_t * append_ans = (uint32_t *)roaring_malloc(sizeof(*append_ans) * (cur_len + t_limit));
if(append_ans == NULL) {
if(t_ans != NULL) roaring_free(t_ans);
return false;
}
memset(append_ans, 0, sizeof(*append_ans) * (cur_len + t_limit));
cur_len = cur_len + t_limit;
memcpy(append_ans, t_ans, dtr * sizeof(uint32_t));
roaring_free(t_ans);
t_ans = append_ans;
}
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE:
container_to_uint32_array(
t_ans + dtr,
const_CAST_bitset(c), ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
case ARRAY_CONTAINER_TYPE:
container_to_uint32_array(
t_ans + dtr,
const_CAST_array(c), ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
case RUN_CONTAINER_TYPE:
container_to_uint32_array(
t_ans + dtr,
const_CAST_run(c), ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
}
dtr += t_limit;
}
ctr += t_limit;
if (dtr-first_skip >= limit) break;
}
if(t_ans != NULL) {
memcpy(ans, t_ans+first_skip, limit * sizeof(uint32_t));
free(t_ans);
}
return true;
}
bool ra_has_run_container(const roaring_array_t *ra) {
for (int32_t k = 0; k < ra->size; ++k) {
if (get_container_type(ra->containers[k], ra->typecodes[k]) ==
RUN_CONTAINER_TYPE)
return true;
}
return false;
}
uint32_t ra_portable_header_size(const roaring_array_t *ra) {
if (ra_has_run_container(ra)) {
if (ra->size <
NO_OFFSET_THRESHOLD) { // for small bitmaps, we omit the offsets
return 4 + (ra->size + 7) / 8 + 4 * ra->size;
}
return 4 + (ra->size + 7) / 8 +
8 * ra->size; // - 4 because we pack the size with the cookie
} else {
return 4 + 4 + 8 * ra->size;
}
}
size_t ra_portable_size_in_bytes(const roaring_array_t *ra) {
size_t count = ra_portable_header_size(ra);
for (int32_t k = 0; k < ra->size; ++k) {
count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
}
return count;
}
// This function is endian-sensitive.
size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) {
char *initbuf = buf;
uint32_t startOffset = 0;
bool hasrun = ra_has_run_container(ra);
if (hasrun) {
uint32_t cookie = SERIAL_COOKIE | ((ra->size - 1) << 16);
memcpy(buf, &cookie, sizeof(cookie));
buf += sizeof(cookie);
uint32_t s = (ra->size + 7) / 8;
uint8_t *bitmapOfRunContainers = (uint8_t *)roaring_calloc(s, 1);
assert(bitmapOfRunContainers != NULL); // todo: handle
for (int32_t i = 0; i < ra->size; ++i) {
if (get_container_type(ra->containers[i], ra->typecodes[i]) ==
RUN_CONTAINER_TYPE) {
bitmapOfRunContainers[i / 8] |= (1 << (i % 8));
}
}
memcpy(buf, bitmapOfRunContainers, s);
buf += s;
roaring_free(bitmapOfRunContainers);
if (ra->size < NO_OFFSET_THRESHOLD) {
startOffset = 4 + 4 * ra->size + s;
} else {
startOffset = 4 + 8 * ra->size + s;
}
} else { // backwards compatibility
uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER;
memcpy(buf, &cookie, sizeof(cookie));
buf += sizeof(cookie);
memcpy(buf, &ra->size, sizeof(ra->size));
buf += sizeof(ra->size);
startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size;
}
for (int32_t k = 0; k < ra->size; ++k) {
memcpy(buf, &ra->keys[k], sizeof(ra->keys[k]));
buf += sizeof(ra->keys[k]);
// get_cardinality returns a value in [1,1<<16], subtracting one
// we get [0,1<<16 - 1] which fits in 16 bits
uint16_t card = (uint16_t)(
container_get_cardinality(ra->containers[k], ra->typecodes[k]) - 1);
memcpy(buf, &card, sizeof(card));
buf += sizeof(card);
}
if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) {
// writing the containers offsets
for (int32_t k = 0; k < ra->size; k++) {
memcpy(buf, &startOffset, sizeof(startOffset));
buf += sizeof(startOffset);
startOffset =
startOffset +
container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
}
}
for (int32_t k = 0; k < ra->size; ++k) {
buf += container_write(ra->containers[k], ra->typecodes[k], buf);
}
return buf - initbuf;
}
// Quickly checks whether there is a serialized bitmap at the pointer,
// not exceeding size "maxbytes" in bytes. This function does not allocate
// memory dynamically.
//
// This function returns 0 if and only if no valid bitmap is found.
// Otherwise, it returns how many bytes are occupied.
//
size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) {
size_t bytestotal = sizeof(int32_t);// for cookie
if(bytestotal > maxbytes) return 0;
uint32_t cookie;
memcpy(&cookie, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
return 0;
}
int32_t size;
if ((cookie & 0xFFFF) == SERIAL_COOKIE)
size = (cookie >> 16) + 1;
else {
bytestotal += sizeof(int32_t);
if(bytestotal > maxbytes) return 0;
memcpy(&size, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
}
if (size > (1<<16)) {
return 0;
}
char *bitmapOfRunContainers = NULL;
bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
if (hasrun) {
int32_t s = (size + 7) / 8;
bytestotal += s;
if(bytestotal > maxbytes) return 0;
bitmapOfRunContainers = (char *)buf;
buf += s;
}
bytestotal += size * 2 * sizeof(uint16_t);
if(bytestotal > maxbytes) return 0;
uint16_t *keyscards = (uint16_t *)buf;
buf += size * 2 * sizeof(uint16_t);
if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
// skipping the offsets
bytestotal += size * 4;
if(bytestotal > maxbytes) return 0;
buf += size * 4;
}
// Reading the containers
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
uint32_t thiscard = tmp + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if(hasrun) {
if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
isbitmap = false;
isrun = true;
}
}
if (isbitmap) {
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
} else if (isrun) {
bytestotal += sizeof(uint16_t);
if(bytestotal > maxbytes) return 0;
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
buf += sizeof(uint16_t);
size_t containersize = n_runs * sizeof(rle16_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
} else {
size_t containersize = thiscard * sizeof(uint16_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
}
}
return bytestotal;
}
// This function populates answer from the content of buf (reading up to maxbytes bytes).
// The function returns false if a properly serialized bitmap cannot be found.
// If it returns true, readbytes is populated by how many bytes were read, we have that *readbytes <= maxbytes.
//
// This function is endian-sensitive.
bool ra_portable_deserialize(roaring_array_t *answer, const char *buf, const size_t maxbytes, size_t * readbytes) {
*readbytes = sizeof(int32_t);// for cookie
if(*readbytes > maxbytes) {
// Ran out of bytes while reading first 4 bytes.
return false;
}
uint32_t cookie;
memcpy(&cookie, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
// "I failed to find one of the right cookies.
return false;
}
int32_t size;
if ((cookie & 0xFFFF) == SERIAL_COOKIE)
size = (cookie >> 16) + 1;
else {
*readbytes += sizeof(int32_t);
if(*readbytes > maxbytes) {
// Ran out of bytes while reading second part of the cookie.
return false;
}
memcpy(&size, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
}
if (size < 0) {
// You cannot have a negative number of containers, the data must be corrupted.
return false;
}
if (size > (1<<16)) {
// You cannot have so many containers, the data must be corrupted.
return false;
}
const char *bitmapOfRunContainers = NULL;
bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
if (hasrun) {
int32_t s = (size + 7) / 8;
*readbytes += s;
if(*readbytes > maxbytes) {// data is corrupted?
// Ran out of bytes while reading run bitmap.
return false;
}
bitmapOfRunContainers = buf;
buf += s;
}
uint16_t *keyscards = (uint16_t *)buf;
*readbytes += size * 2 * sizeof(uint16_t);
if(*readbytes > maxbytes) {
// Ran out of bytes while reading key-cardinality array.
return false;
}
buf += size * 2 * sizeof(uint16_t);
bool is_ok = ra_init_with_capacity(answer, size);
if (!is_ok) {
// Failed to allocate memory for roaring array. Bailing out.
return false;
}
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k, sizeof(tmp));
answer->keys[k] = tmp;
}
if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
*readbytes += size * 4;
if(*readbytes > maxbytes) {// data is corrupted?
// Ran out of bytes while reading offsets.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// skipping the offsets
buf += size * 4;
}
// Reading the containers
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
uint32_t thiscard = tmp + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if(hasrun) {
if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
isbitmap = false;
isrun = true;
}
}
if (isbitmap) {
// we check that the read is allowed
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {
// Running out of bytes while reading a bitset container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
bitset_container_t *c = bitset_container_create();
if(c == NULL) {// memory allocation failure
// Failed to allocate memory for a bitset container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += bitset_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = BITSET_CONTAINER_TYPE;
} else if (isrun) {
// we check that the read is allowed
*readbytes += sizeof(uint16_t);
if(*readbytes > maxbytes) {
// Running out of bytes while reading a run container (header).
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
size_t containersize = n_runs * sizeof(rle16_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {// data is corrupted?
// Running out of bytes while reading a run container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
run_container_t *c = run_container_create();
if(c == NULL) {// memory allocation failure
// Failed to allocate memory for a run container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += run_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = RUN_CONTAINER_TYPE;
} else {
// we check that the read is allowed
size_t containersize = thiscard * sizeof(uint16_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {// data is corrupted?
// Running out of bytes while reading an array container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
array_container_t *c =
array_container_create_given_capacity(thiscard);
if(c == NULL) {// memory allocation failure
// Failed to allocate memory for an array container.
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += array_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = ARRAY_CONTAINER_TYPE;
}
}
return true;
}
#ifdef __cplusplus
} } } // extern "C" { namespace roaring { namespace internal {
#endif
|