aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/croaring/src/containers/run.c
blob: 0d6472643446e33af1f6a53e9d511756a9223af9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
#include <stdio.h>
#include <stdlib.h>

#include <roaring/containers/run.h>
#include <roaring/memory.h>
#include <roaring/portability.h>

#if CROARING_IS_X64
#ifndef CROARING_COMPILER_SUPPORTS_AVX512
#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
#endif  // CROARING_COMPILER_SUPPORTS_AVX512
#endif
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace internal {
#endif

extern inline uint16_t run_container_minimum(const run_container_t *run);
extern inline uint16_t run_container_maximum(const run_container_t *run);
extern inline int32_t interleavedBinarySearch(const rle16_t *array,
                                              int32_t lenarray, uint16_t ikey);
extern inline bool run_container_contains(const run_container_t *run,
                                          uint16_t pos);
extern inline int run_container_index_equalorlarger(const run_container_t *arr,
                                                    uint16_t x);
extern inline bool run_container_is_full(const run_container_t *run);
extern inline bool run_container_nonzero_cardinality(const run_container_t *rc);
extern inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs);
extern inline run_container_t *run_container_create_range(uint32_t start,
                                                          uint32_t stop);
extern inline int run_container_cardinality(const run_container_t *run);

bool run_container_add(run_container_t *run, uint16_t pos) {
    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
    if (index >= 0) return false;  // already there
    index = -index - 2;            // points to preceding value, possibly -1
    if (index >= 0) {              // possible match
        int32_t offset = pos - run->runs[index].value;
        int32_t le = run->runs[index].length;
        if (offset <= le) return false;  // already there
        if (offset == le + 1) {
            // we may need to fuse
            if (index + 1 < run->n_runs) {
                if (run->runs[index + 1].value == pos + 1) {
                    // indeed fusion is needed
                    run->runs[index].length = run->runs[index + 1].value +
                                              run->runs[index + 1].length -
                                              run->runs[index].value;
                    recoverRoomAtIndex(run, (uint16_t)(index + 1));
                    return true;
                }
            }
            run->runs[index].length++;
            return true;
        }
        if (index + 1 < run->n_runs) {
            // we may need to fuse
            if (run->runs[index + 1].value == pos + 1) {
                // indeed fusion is needed
                run->runs[index + 1].value = pos;
                run->runs[index + 1].length = run->runs[index + 1].length + 1;
                return true;
            }
        }
    }
    if (index == -1) {
        // we may need to extend the first run
        if (0 < run->n_runs) {
            if (run->runs[0].value == pos + 1) {
                run->runs[0].length++;
                run->runs[0].value--;
                return true;
            }
        }
    }
    makeRoomAtIndex(run, (uint16_t)(index + 1));
    run->runs[index + 1].value = pos;
    run->runs[index + 1].length = 0;
    return true;
}

/* Create a new run container. Return NULL in case of failure. */
run_container_t *run_container_create_given_capacity(int32_t size) {
    run_container_t *run;
    /* Allocate the run container itself. */
    if ((run = (run_container_t *)roaring_malloc(sizeof(run_container_t))) ==
        NULL) {
        return NULL;
    }
    if (size <= 0) {  // we don't want to rely on malloc(0)
        run->runs = NULL;
    } else if ((run->runs = (rle16_t *)roaring_malloc(sizeof(rle16_t) *
                                                      size)) == NULL) {
        roaring_free(run);
        return NULL;
    }
    run->capacity = size;
    run->n_runs = 0;
    return run;
}

int run_container_shrink_to_fit(run_container_t *src) {
    if (src->n_runs == src->capacity) return 0;  // nothing to do
    int savings = src->capacity - src->n_runs;
    src->capacity = src->n_runs;
    rle16_t *oldruns = src->runs;
    src->runs =
        (rle16_t *)roaring_realloc(oldruns, src->capacity * sizeof(rle16_t));
    if (src->runs == NULL) roaring_free(oldruns);  // should never happen?
    return savings;
}
/* Create a new run container. Return NULL in case of failure. */
run_container_t *run_container_create(void) {
    return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
}

ALLOW_UNALIGNED
run_container_t *run_container_clone(const run_container_t *src) {
    run_container_t *run = run_container_create_given_capacity(src->capacity);
    if (run == NULL) return NULL;
    run->capacity = src->capacity;
    run->n_runs = src->n_runs;
    memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
    return run;
}

void run_container_offset(const run_container_t *c, container_t **loc,
                          container_t **hic, uint16_t offset) {
    run_container_t *lo = NULL, *hi = NULL;

    bool split;
    int lo_cap, hi_cap;
    int top, pivot;

    top = (1 << 16) - offset;
    pivot = run_container_index_equalorlarger(c, top);

    if (pivot == -1) {
        split = false;
        lo_cap = c->n_runs;
        hi_cap = 0;
    } else {
        split = c->runs[pivot].value < top;
        lo_cap = pivot + (split ? 1 : 0);
        hi_cap = c->n_runs - pivot;
    }

    if (loc && lo_cap) {
        lo = run_container_create_given_capacity(lo_cap);
        memcpy(lo->runs, c->runs, lo_cap * sizeof(rle16_t));
        lo->n_runs = lo_cap;
        for (int i = 0; i < lo_cap; ++i) {
            lo->runs[i].value += offset;
        }
        *loc = (container_t *)lo;
    }

    if (hic && hi_cap) {
        hi = run_container_create_given_capacity(hi_cap);
        memcpy(hi->runs, c->runs + pivot, hi_cap * sizeof(rle16_t));
        hi->n_runs = hi_cap;
        for (int i = 0; i < hi_cap; ++i) {
            hi->runs[i].value += offset;
        }
        *hic = (container_t *)hi;
    }

    // Fix the split.
    if (split) {
        if (lo != NULL) {
            // Add the missing run to 'lo', exhausting length.
            lo->runs[lo->n_runs - 1].length =
                (1 << 16) - lo->runs[lo->n_runs - 1].value - 1;
        }

        if (hi != NULL) {
            // Fix the first run in 'hi'.
            hi->runs[0].length -= UINT16_MAX - hi->runs[0].value + 1;
            hi->runs[0].value = 0;
        }
    }
}

/* Free memory. */
void run_container_free(run_container_t *run) {
    if (run->runs !=
        NULL) {  // Jon Strabala reports that some tools complain otherwise
        roaring_free(run->runs);
        run->runs = NULL;  // pedantic
    }
    roaring_free(run);
}

void run_container_grow(run_container_t *run, int32_t min, bool copy) {
    int32_t newCapacity = (run->capacity == 0)   ? RUN_DEFAULT_INIT_SIZE
                          : run->capacity < 64   ? run->capacity * 2
                          : run->capacity < 1024 ? run->capacity * 3 / 2
                                                 : run->capacity * 5 / 4;
    if (newCapacity < min) newCapacity = min;
    run->capacity = newCapacity;
    assert(run->capacity >= min);
    if (copy) {
        rle16_t *oldruns = run->runs;
        run->runs = (rle16_t *)roaring_realloc(oldruns,
                                               run->capacity * sizeof(rle16_t));
        if (run->runs == NULL) roaring_free(oldruns);
    } else {
        // Jon Strabala reports that some tools complain otherwise
        if (run->runs != NULL) {
            roaring_free(run->runs);
        }
        run->runs = (rle16_t *)roaring_malloc(run->capacity * sizeof(rle16_t));
    }
    // We may have run->runs == NULL.
}

/* copy one container into another */
void run_container_copy(const run_container_t *src, run_container_t *dst) {
    const int32_t n_runs = src->n_runs;
    if (src->n_runs > dst->capacity) {
        run_container_grow(dst, n_runs, false);
    }
    dst->n_runs = n_runs;
    memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
}

/* Compute the union of `src_1' and `src_2' and write the result to `dst'
 * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_union(const run_container_t *src_1,
                         const run_container_t *src_2, run_container_t *dst) {
    // TODO: this could be a lot more efficient

    // we start out with inexpensive checks
    const bool if1 = run_container_is_full(src_1);
    const bool if2 = run_container_is_full(src_2);
    if (if1 || if2) {
        if (if1) {
            run_container_copy(src_1, dst);
            return;
        }
        if (if2) {
            run_container_copy(src_2, dst);
            return;
        }
    }
    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
    if (dst->capacity < neededcapacity)
        run_container_grow(dst, neededcapacity, false);
    dst->n_runs = 0;
    int32_t rlepos = 0;
    int32_t xrlepos = 0;

    rle16_t previousrle;
    if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
        previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
        rlepos++;
    } else {
        previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
        xrlepos++;
    }

    while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
        rle16_t newrl;
        if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
            newrl = src_1->runs[rlepos];
            rlepos++;
        } else {
            newrl = src_2->runs[xrlepos];
            xrlepos++;
        }
        run_container_append(dst, newrl, &previousrle);
    }
    while (xrlepos < src_2->n_runs) {
        run_container_append(dst, src_2->runs[xrlepos], &previousrle);
        xrlepos++;
    }
    while (rlepos < src_1->n_runs) {
        run_container_append(dst, src_1->runs[rlepos], &previousrle);
        rlepos++;
    }
}

/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
 */
void run_container_union_inplace(run_container_t *src_1,
                                 const run_container_t *src_2) {
    // TODO: this could be a lot more efficient

    // we start out with inexpensive checks
    const bool if1 = run_container_is_full(src_1);
    const bool if2 = run_container_is_full(src_2);
    if (if1 || if2) {
        if (if1) {
            return;
        }
        if (if2) {
            run_container_copy(src_2, src_1);
            return;
        }
    }
    // we move the data to the end of the current array
    const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
    const int32_t neededcapacity = maxoutput + src_1->n_runs;
    if (src_1->capacity < neededcapacity)
        run_container_grow(src_1, neededcapacity, true);
    memmove(src_1->runs + maxoutput, src_1->runs,
            src_1->n_runs * sizeof(rle16_t));
    rle16_t *inputsrc1 = src_1->runs + maxoutput;
    const int32_t input1nruns = src_1->n_runs;
    src_1->n_runs = 0;
    int32_t rlepos = 0;
    int32_t xrlepos = 0;

    rle16_t previousrle;
    if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
        previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
        rlepos++;
    } else {
        previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
        xrlepos++;
    }
    while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
        rle16_t newrl;
        if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
            newrl = inputsrc1[rlepos];
            rlepos++;
        } else {
            newrl = src_2->runs[xrlepos];
            xrlepos++;
        }
        run_container_append(src_1, newrl, &previousrle);
    }
    while (xrlepos < src_2->n_runs) {
        run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
        xrlepos++;
    }
    while (rlepos < input1nruns) {
        run_container_append(src_1, inputsrc1[rlepos], &previousrle);
        rlepos++;
    }
}

/* Compute the symmetric difference of `src_1' and `src_2' and write the result
 * to `dst'
 * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_xor(const run_container_t *src_1,
                       const run_container_t *src_2, run_container_t *dst) {
    // don't bother to convert xor with full range into negation
    // since negation is implemented similarly

    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
    if (dst->capacity < neededcapacity)
        run_container_grow(dst, neededcapacity, false);

    int32_t pos1 = 0;
    int32_t pos2 = 0;
    dst->n_runs = 0;

    while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
        if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
            run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
                                                 src_1->runs[pos1].length);
            pos1++;
        } else {
            run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
                                                 src_2->runs[pos2].length);
            pos2++;
        }
    }
    while (pos1 < src_1->n_runs) {
        run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
                                             src_1->runs[pos1].length);
        pos1++;
    }

    while (pos2 < src_2->n_runs) {
        run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
                                             src_2->runs[pos2].length);
        pos2++;
    }
}

/* Compute the intersection of src_1 and src_2 and write the result to
 * dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_intersection(const run_container_t *src_1,
                                const run_container_t *src_2,
                                run_container_t *dst) {
    const bool if1 = run_container_is_full(src_1);
    const bool if2 = run_container_is_full(src_2);
    if (if1 || if2) {
        if (if1) {
            run_container_copy(src_2, dst);
            return;
        }
        if (if2) {
            run_container_copy(src_1, dst);
            return;
        }
    }
    // TODO: this could be a lot more efficient, could use SIMD optimizations
    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
    if (dst->capacity < neededcapacity)
        run_container_grow(dst, neededcapacity, false);
    dst->n_runs = 0;
    int32_t rlepos = 0;
    int32_t xrlepos = 0;
    int32_t start = src_1->runs[rlepos].value;
    int32_t end = start + src_1->runs[rlepos].length + 1;
    int32_t xstart = src_2->runs[xrlepos].value;
    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
        if (end <= xstart) {
            ++rlepos;
            if (rlepos < src_1->n_runs) {
                start = src_1->runs[rlepos].value;
                end = start + src_1->runs[rlepos].length + 1;
            }
        } else if (xend <= start) {
            ++xrlepos;
            if (xrlepos < src_2->n_runs) {
                xstart = src_2->runs[xrlepos].value;
                xend = xstart + src_2->runs[xrlepos].length + 1;
            }
        } else {  // they overlap
            const int32_t lateststart = start > xstart ? start : xstart;
            int32_t earliestend;
            if (end == xend) {  // improbable
                earliestend = end;
                rlepos++;
                xrlepos++;
                if (rlepos < src_1->n_runs) {
                    start = src_1->runs[rlepos].value;
                    end = start + src_1->runs[rlepos].length + 1;
                }
                if (xrlepos < src_2->n_runs) {
                    xstart = src_2->runs[xrlepos].value;
                    xend = xstart + src_2->runs[xrlepos].length + 1;
                }
            } else if (end < xend) {
                earliestend = end;
                rlepos++;
                if (rlepos < src_1->n_runs) {
                    start = src_1->runs[rlepos].value;
                    end = start + src_1->runs[rlepos].length + 1;
                }

            } else {  // end > xend
                earliestend = xend;
                xrlepos++;
                if (xrlepos < src_2->n_runs) {
                    xstart = src_2->runs[xrlepos].value;
                    xend = xstart + src_2->runs[xrlepos].length + 1;
                }
            }
            dst->runs[dst->n_runs].value = (uint16_t)lateststart;
            dst->runs[dst->n_runs].length =
                (uint16_t)(earliestend - lateststart - 1);
            dst->n_runs++;
        }
    }
}

/* Compute the size of the intersection of src_1 and src_2 . */
int run_container_intersection_cardinality(const run_container_t *src_1,
                                           const run_container_t *src_2) {
    const bool if1 = run_container_is_full(src_1);
    const bool if2 = run_container_is_full(src_2);
    if (if1 || if2) {
        if (if1) {
            return run_container_cardinality(src_2);
        }
        if (if2) {
            return run_container_cardinality(src_1);
        }
    }
    int answer = 0;
    int32_t rlepos = 0;
    int32_t xrlepos = 0;
    int32_t start = src_1->runs[rlepos].value;
    int32_t end = start + src_1->runs[rlepos].length + 1;
    int32_t xstart = src_2->runs[xrlepos].value;
    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
        if (end <= xstart) {
            ++rlepos;
            if (rlepos < src_1->n_runs) {
                start = src_1->runs[rlepos].value;
                end = start + src_1->runs[rlepos].length + 1;
            }
        } else if (xend <= start) {
            ++xrlepos;
            if (xrlepos < src_2->n_runs) {
                xstart = src_2->runs[xrlepos].value;
                xend = xstart + src_2->runs[xrlepos].length + 1;
            }
        } else {  // they overlap
            const int32_t lateststart = start > xstart ? start : xstart;
            int32_t earliestend;
            if (end == xend) {  // improbable
                earliestend = end;
                rlepos++;
                xrlepos++;
                if (rlepos < src_1->n_runs) {
                    start = src_1->runs[rlepos].value;
                    end = start + src_1->runs[rlepos].length + 1;
                }
                if (xrlepos < src_2->n_runs) {
                    xstart = src_2->runs[xrlepos].value;
                    xend = xstart + src_2->runs[xrlepos].length + 1;
                }
            } else if (end < xend) {
                earliestend = end;
                rlepos++;
                if (rlepos < src_1->n_runs) {
                    start = src_1->runs[rlepos].value;
                    end = start + src_1->runs[rlepos].length + 1;
                }

            } else {  // end > xend
                earliestend = xend;
                xrlepos++;
                if (xrlepos < src_2->n_runs) {
                    xstart = src_2->runs[xrlepos].value;
                    xend = xstart + src_2->runs[xrlepos].length + 1;
                }
            }
            answer += earliestend - lateststart;
        }
    }
    return answer;
}

bool run_container_intersect(const run_container_t *src_1,
                             const run_container_t *src_2) {
    const bool if1 = run_container_is_full(src_1);
    const bool if2 = run_container_is_full(src_2);
    if (if1 || if2) {
        if (if1) {
            return !run_container_empty(src_2);
        }
        if (if2) {
            return !run_container_empty(src_1);
        }
    }
    int32_t rlepos = 0;
    int32_t xrlepos = 0;
    int32_t start = src_1->runs[rlepos].value;
    int32_t end = start + src_1->runs[rlepos].length + 1;
    int32_t xstart = src_2->runs[xrlepos].value;
    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
        if (end <= xstart) {
            ++rlepos;
            if (rlepos < src_1->n_runs) {
                start = src_1->runs[rlepos].value;
                end = start + src_1->runs[rlepos].length + 1;
            }
        } else if (xend <= start) {
            ++xrlepos;
            if (xrlepos < src_2->n_runs) {
                xstart = src_2->runs[xrlepos].value;
                xend = xstart + src_2->runs[xrlepos].length + 1;
            }
        } else {  // they overlap
            return true;
        }
    }
    return false;
}

/* Compute the difference of src_1 and src_2 and write the result to
 * dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_andnot(const run_container_t *src_1,
                          const run_container_t *src_2, run_container_t *dst) {
    // following Java implementation as of June 2016

    if (dst->capacity < src_1->n_runs + src_2->n_runs)
        run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);

    dst->n_runs = 0;

    int rlepos1 = 0;
    int rlepos2 = 0;
    int32_t start = src_1->runs[rlepos1].value;
    int32_t end = start + src_1->runs[rlepos1].length + 1;
    int32_t start2 = src_2->runs[rlepos2].value;
    int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;

    while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
        if (end <= start2) {
            // output the first run
            dst->runs[dst->n_runs++] =
                CROARING_MAKE_RLE16(start, end - start - 1);
            rlepos1++;
            if (rlepos1 < src_1->n_runs) {
                start = src_1->runs[rlepos1].value;
                end = start + src_1->runs[rlepos1].length + 1;
            }
        } else if (end2 <= start) {
            // exit the second run
            rlepos2++;
            if (rlepos2 < src_2->n_runs) {
                start2 = src_2->runs[rlepos2].value;
                end2 = start2 + src_2->runs[rlepos2].length + 1;
            }
        } else {
            if (start < start2) {
                dst->runs[dst->n_runs++] =
                    CROARING_MAKE_RLE16(start, start2 - start - 1);
            }
            if (end2 < end) {
                start = end2;
            } else {
                rlepos1++;
                if (rlepos1 < src_1->n_runs) {
                    start = src_1->runs[rlepos1].value;
                    end = start + src_1->runs[rlepos1].length + 1;
                }
            }
        }
    }
    if (rlepos1 < src_1->n_runs) {
        dst->runs[dst->n_runs++] = CROARING_MAKE_RLE16(start, end - start - 1);
        rlepos1++;
        if (rlepos1 < src_1->n_runs) {
            memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
                   sizeof(rle16_t) * (src_1->n_runs - rlepos1));
            dst->n_runs += src_1->n_runs - rlepos1;
        }
    }
}

ALLOW_UNALIGNED
int run_container_to_uint32_array(void *vout, const run_container_t *cont,
                                  uint32_t base) {
    int outpos = 0;
    uint32_t *out = (uint32_t *)vout;
    for (int i = 0; i < cont->n_runs; ++i) {
        uint32_t run_start = base + cont->runs[i].value;
        uint16_t le = cont->runs[i].length;
        for (int j = 0; j <= le; ++j) {
            uint32_t val = run_start + j;
            memcpy(out + outpos, &val,
                   sizeof(uint32_t));  // should be compiled as a MOV on x64
            outpos++;
        }
    }
    return outpos;
}

/*
 * Print this container using printf (useful for debugging).
 */
void run_container_printf(const run_container_t *cont) {
    for (int i = 0; i < cont->n_runs; ++i) {
        uint16_t run_start = cont->runs[i].value;
        uint16_t le = cont->runs[i].length;
        printf("[%d,%d]", run_start, run_start + le);
    }
}

/*
 * Print this container using printf as a comma-separated list of 32-bit
 * integers starting at base.
 */
void run_container_printf_as_uint32_array(const run_container_t *cont,
                                          uint32_t base) {
    if (cont->n_runs == 0) return;
    {
        uint32_t run_start = base + cont->runs[0].value;
        uint16_t le = cont->runs[0].length;
        printf("%u", run_start);
        for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
    }
    for (int32_t i = 1; i < cont->n_runs; ++i) {
        uint32_t run_start = base + cont->runs[i].value;
        uint16_t le = cont->runs[i].length;
        for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
    }
}

/*
 * Validate the container. Returns true if valid.
 */
bool run_container_validate(const run_container_t *run, const char **reason) {
    if (run->n_runs < 0) {
        *reason = "negative run count";
        return false;
    }
    if (run->capacity < 0) {
        *reason = "negative run capacity";
        return false;
    }
    if (run->capacity < run->n_runs) {
        *reason = "capacity less than run count";
        return false;
    }

    if (run->n_runs == 0) {
        *reason = "zero run count";
        return false;
    }
    if (run->runs == NULL) {
        *reason = "NULL runs";
        return false;
    }

    // Use uint32_t to avoid overflow issues on ranges that contain UINT16_MAX.
    uint32_t last_end = 0;
    for (int i = 0; i < run->n_runs; ++i) {
        uint32_t start = run->runs[i].value;
        uint32_t end = start + run->runs[i].length + 1;
        if (end <= start) {
            *reason = "run start + length overflow";
            return false;
        }
        if (end > (1 << 16)) {
            *reason = "run start + length too large";
            return false;
        }
        if (start < last_end) {
            *reason = "run start less than last end";
            return false;
        }
        if (start == last_end && last_end != 0) {
            *reason = "run start equal to last end, should have combined";
            return false;
        }
        last_end = end;
    }
    return true;
}

int32_t run_container_write(const run_container_t *container, char *buf) {
    uint16_t cast_16 = container->n_runs;
    memcpy(buf, &cast_16, sizeof(uint16_t));
    memcpy(buf + sizeof(uint16_t), container->runs,
           container->n_runs * sizeof(rle16_t));
    return run_container_size_in_bytes(container);
}

int32_t run_container_read(int32_t cardinality, run_container_t *container,
                           const char *buf) {
    (void)cardinality;
    uint16_t cast_16;
    memcpy(&cast_16, buf, sizeof(uint16_t));
    container->n_runs = cast_16;
    if (container->n_runs > container->capacity)
        run_container_grow(container, container->n_runs, false);
    if (container->n_runs > 0) {
        memcpy(container->runs, buf + sizeof(uint16_t),
               container->n_runs * sizeof(rle16_t));
    }
    return run_container_size_in_bytes(container);
}

bool run_container_iterate(const run_container_t *cont, uint32_t base,
                           roaring_iterator iterator, void *ptr) {
    for (int i = 0; i < cont->n_runs; ++i) {
        uint32_t run_start = base + cont->runs[i].value;
        uint16_t le = cont->runs[i].length;

        for (int j = 0; j <= le; ++j)
            if (!iterator(run_start + j, ptr)) return false;
    }
    return true;
}

bool run_container_iterate64(const run_container_t *cont, uint32_t base,
                             roaring_iterator64 iterator, uint64_t high_bits,
                             void *ptr) {
    for (int i = 0; i < cont->n_runs; ++i) {
        uint32_t run_start = base + cont->runs[i].value;
        uint16_t le = cont->runs[i].length;

        for (int j = 0; j <= le; ++j)
            if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
                return false;
    }
    return true;
}

bool run_container_is_subset(const run_container_t *container1,
                             const run_container_t *container2) {
    int i1 = 0, i2 = 0;
    while (i1 < container1->n_runs && i2 < container2->n_runs) {
        int start1 = container1->runs[i1].value;
        int stop1 = start1 + container1->runs[i1].length;
        int start2 = container2->runs[i2].value;
        int stop2 = start2 + container2->runs[i2].length;
        if (start1 < start2) {
            return false;
        } else {  // start1 >= start2
            if (stop1 < stop2) {
                i1++;
            } else if (stop1 == stop2) {
                i1++;
                i2++;
            } else {  // stop1 > stop2
                i2++;
            }
        }
    }
    if (i1 == container1->n_runs) {
        return true;
    } else {
        return false;
    }
}

// TODO: write smart_append_exclusive version to match the overloaded 1 param
// Java version (or  is it even used?)

// follows the Java implementation closely
// length is the rle-value.  Ie, run [10,12) uses a length value 1.
void run_container_smart_append_exclusive(run_container_t *src,
                                          const uint16_t start,
                                          const uint16_t length) {
    int old_end;
    rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
    rle16_t *appended_last_run = src->runs + src->n_runs;

    if (!src->n_runs ||
        (start > (old_end = last_run->value + last_run->length + 1))) {
        *appended_last_run = CROARING_MAKE_RLE16(start, length);
        src->n_runs++;
        return;
    }
    if (old_end == start) {
        // we merge
        last_run->length += (length + 1);
        return;
    }
    int new_end = start + length + 1;

    if (start == last_run->value) {
        // wipe out previous
        if (new_end < old_end) {
            *last_run = CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
            return;
        } else if (new_end > old_end) {
            *last_run = CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
            return;
        } else {
            src->n_runs--;
            return;
        }
    }
    last_run->length = start - last_run->value - 1;
    if (new_end < old_end) {
        *appended_last_run =
            CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
        src->n_runs++;
    } else if (new_end > old_end) {
        *appended_last_run =
            CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
        src->n_runs++;
    }
}

bool run_container_select(const run_container_t *container,
                          uint32_t *start_rank, uint32_t rank,
                          uint32_t *element) {
    for (int i = 0; i < container->n_runs; i++) {
        uint16_t length = container->runs[i].length;
        if (rank <= *start_rank + length) {
            uint16_t value = container->runs[i].value;
            *element = value + rank - (*start_rank);
            return true;
        } else
            *start_rank += length + 1;
    }
    return false;
}

int run_container_rank(const run_container_t *container, uint16_t x) {
    int sum = 0;
    uint32_t x32 = x;
    for (int i = 0; i < container->n_runs; i++) {
        uint32_t startpoint = container->runs[i].value;
        uint32_t length = container->runs[i].length;
        uint32_t endpoint = length + startpoint;
        if (x <= endpoint) {
            if (x < startpoint) break;
            return sum + (x32 - startpoint) + 1;
        } else {
            sum += length + 1;
        }
    }
    return sum;
}
uint32_t run_container_rank_many(const run_container_t *container,
                                 uint64_t start_rank, const uint32_t *begin,
                                 const uint32_t *end, uint64_t *ans) {
    const uint16_t high = (uint16_t)((*begin) >> 16);
    const uint32_t *iter = begin;
    int sum = 0;
    int i = 0;
    for (; iter != end; iter++) {
        uint32_t x = *iter;
        uint16_t xhigh = (uint16_t)(x >> 16);
        if (xhigh != high) return iter - begin;  // stop at next container

        uint32_t x32 = x & 0xFFFF;
        while (i < container->n_runs) {
            uint32_t startpoint = container->runs[i].value;
            uint32_t length = container->runs[i].length;
            uint32_t endpoint = length + startpoint;
            if (x32 <= endpoint) {
                if (x32 < startpoint) {
                    *(ans++) = start_rank + sum;
                } else {
                    *(ans++) = start_rank + sum + (x32 - startpoint) + 1;
                }
                break;
            } else {
                sum += length + 1;
                i++;
            }
        }
        if (i >= container->n_runs) *(ans++) = start_rank + sum;
    }

    return iter - begin;
}

int run_container_get_index(const run_container_t *container, uint16_t x) {
    if (run_container_contains(container, x)) {
        int sum = 0;
        uint32_t x32 = x;
        for (int i = 0; i < container->n_runs; i++) {
            uint32_t startpoint = container->runs[i].value;
            uint32_t length = container->runs[i].length;
            uint32_t endpoint = length + startpoint;
            if (x <= endpoint) {
                if (x < startpoint) break;
                return sum + (x32 - startpoint);
            } else {
                sum += length + 1;
            }
        }
        return sum - 1;
    } else {
        return -1;
    }
}

#if defined(CROARING_IS_X64) && CROARING_COMPILER_SUPPORTS_AVX512

CROARING_TARGET_AVX512
ALLOW_UNALIGNED
/* Get the cardinality of `run'. Requires an actual computation. */
static inline int _avx512_run_container_cardinality(
    const run_container_t *run) {
    const int32_t n_runs = run->n_runs;
    const rle16_t *runs = run->runs;

    /* by initializing with n_runs, we omit counting the +1 for each pair. */
    int sum = n_runs;
    int32_t k = 0;
    const int32_t step = sizeof(__m512i) / sizeof(rle16_t);
    if (n_runs > step) {
        __m512i total = _mm512_setzero_si512();
        for (; k + step <= n_runs; k += step) {
            __m512i ymm1 = _mm512_loadu_si512((const __m512i *)(runs + k));
            __m512i justlengths = _mm512_srli_epi32(ymm1, 16);
            total = _mm512_add_epi32(total, justlengths);
        }

        __m256i lo = _mm512_extracti32x8_epi32(total, 0);
        __m256i hi = _mm512_extracti32x8_epi32(total, 1);

        // a store might be faster than extract?
        uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
        _mm256_storeu_si256((__m256i *)buffer, lo);
        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);

        _mm256_storeu_si256((__m256i *)buffer, hi);
        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
    }
    for (; k < n_runs; ++k) {
        sum += runs[k].length;
    }

    return sum;
}

CROARING_UNTARGET_AVX512

CROARING_TARGET_AVX2
ALLOW_UNALIGNED
/* Get the cardinality of `run'. Requires an actual computation. */
static inline int _avx2_run_container_cardinality(const run_container_t *run) {
    const int32_t n_runs = run->n_runs;
    const rle16_t *runs = run->runs;

    /* by initializing with n_runs, we omit counting the +1 for each pair. */
    int sum = n_runs;
    int32_t k = 0;
    const int32_t step = sizeof(__m256i) / sizeof(rle16_t);
    if (n_runs > step) {
        __m256i total = _mm256_setzero_si256();
        for (; k + step <= n_runs; k += step) {
            __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k));
            __m256i justlengths = _mm256_srli_epi32(ymm1, 16);
            total = _mm256_add_epi32(total, justlengths);
        }
        // a store might be faster than extract?
        uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
        _mm256_storeu_si256((__m256i *)buffer, total);
        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
    }
    for (; k < n_runs; ++k) {
        sum += runs[k].length;
    }

    return sum;
}

CROARING_UNTARGET_AVX2

/* Get the cardinality of `run'. Requires an actual computation. */
static inline int _scalar_run_container_cardinality(
    const run_container_t *run) {
    const int32_t n_runs = run->n_runs;
    const rle16_t *runs = run->runs;

    /* by initializing with n_runs, we omit counting the +1 for each pair. */
    int sum = n_runs;
    for (int k = 0; k < n_runs; ++k) {
        sum += runs[k].length;
    }

    return sum;
}

int run_container_cardinality(const run_container_t *run) {
#if CROARING_COMPILER_SUPPORTS_AVX512
    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
        return _avx512_run_container_cardinality(run);
    } else
#endif
        if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
        return _avx2_run_container_cardinality(run);
    } else {
        return _scalar_run_container_cardinality(run);
    }
}
#else

/* Get the cardinality of `run'. Requires an actual computation. */
ALLOW_UNALIGNED
int run_container_cardinality(const run_container_t *run) {
    const int32_t n_runs = run->n_runs;
    const rle16_t *runs = run->runs;

    /* by initializing with n_runs, we omit counting the +1 for each pair. */
    int sum = n_runs;
    for (int k = 0; k < n_runs; ++k) {
        sum += runs[k].length;
    }

    return sum;
}
#endif

#ifdef __cplusplus
}
}
}  // extern "C" { namespace roaring { namespace internal {
#endif
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif