aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/croaring/src/containers/mixed_xor.c
blob: 0d77d61b29ca0b34d8ab2b81cb455ff8943aecf9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
 * mixed_xor.c
 */

#include <assert.h>
#include <string.h>

#include <roaring/bitset_util.h>
#include <roaring/containers/containers.h>
#include <roaring/containers/convert.h>
#include <roaring/containers/mixed_xor.h>
#include <roaring/containers/perfparameters.h>

#ifdef __cplusplus
extern "C" { namespace roaring { namespace internal {
#endif

/* Compute the xor of src_1 and src_2 and write the result to
 * dst (which has no container initially).
 * Result is true iff dst is a bitset  */
bool array_bitset_container_xor(
    const array_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    bitset_container_t *result = bitset_container_create();
    bitset_container_copy(src_2, result);
    result->cardinality = (int32_t)bitset_flip_list_withcard(
        result->words, result->cardinality, src_1->array, src_1->cardinality);

    // do required type conversions.
    if (result->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(result);
        bitset_container_free(result);
        return false;  // not bitset
    }
    *dst = result;
    return true;  // bitset
}

/* Compute the xor of src_1 and src_2 and write the result to
 * dst. It is allowed for src_2 to be dst.  This version does not
 * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
 */

void array_bitset_container_lazy_xor(const array_container_t *src_1,
                                     const bitset_container_t *src_2,
                                     bitset_container_t *dst) {
    if (src_2 != dst) bitset_container_copy(src_2, dst);
    bitset_flip_list(dst->words, src_1->array, src_1->cardinality);
    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}

/* Compute the xor of src_1 and src_2 and write the result to
 * dst. Result may be either a bitset or an array container
 * (returns "result is bitset"). dst does not initially have
 * any container, but becomes either a bitset container (return
 * result true) or an array container.
 */

bool run_bitset_container_xor(
    const run_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    bitset_container_t *result = bitset_container_create();

    bitset_container_copy(src_2, result);
    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
        rle16_t rle = src_1->runs[rlepos];
        bitset_flip_range(result->words, rle.value,
                          rle.value + rle.length + UINT32_C(1));
    }
    result->cardinality = bitset_container_compute_cardinality(result);

    if (result->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(result);
        bitset_container_free(result);
        return false;  // not bitset
    }
    *dst = result;
    return true;  // bitset
}

/* lazy xor.  Dst is initialized and may be equal to src_2.
 *  Result is left as a bitset container, even if actual
 *  cardinality would dictate an array container.
 */

void run_bitset_container_lazy_xor(const run_container_t *src_1,
                                   const bitset_container_t *src_2,
                                   bitset_container_t *dst) {
    if (src_2 != dst) bitset_container_copy(src_2, dst);
    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
        rle16_t rle = src_1->runs[rlepos];
        bitset_flip_range(dst->words, rle.value,
                          rle.value + rle.length + UINT32_C(1));
    }
    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any kind of container.
 */

int array_run_container_xor(
    const array_container_t *src_1, const run_container_t *src_2,
    container_t **dst
){
    // semi following Java XOR implementation as of May 2016
    // the C OR implementation works quite differently and can return a run
    // container
    // TODO could optimize for full run containers.

    // use of lazy following Java impl.
    const int arbitrary_threshold = 32;
    if (src_1->cardinality < arbitrary_threshold) {
        run_container_t *ans = run_container_create();
        array_run_container_lazy_xor(src_1, src_2, ans);  // keeps runs.
        uint8_t typecode_after;
        *dst =
            convert_run_to_efficient_container_and_free(ans, &typecode_after);
        return typecode_after;
    }

    int card = run_container_cardinality(src_2);
    if (card <= DEFAULT_MAX_SIZE) {
        // Java implementation works with the array, xoring the run elements via
        // iterator
        array_container_t *temp = array_container_from_run(src_2);
        bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
        array_container_free(temp);
        return ret_is_bitset ? BITSET_CONTAINER_TYPE
                             : ARRAY_CONTAINER_TYPE;

    } else {  // guess that it will end up as a bitset
        bitset_container_t *result = bitset_container_from_run(src_2);
        bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
        // any necessary type conversion has been done by the ixor
        int retval = (is_bitset ? BITSET_CONTAINER_TYPE
                                : ARRAY_CONTAINER_TYPE);
        return retval;
    }
}

/* Dst is a valid run container. (Can it be src_2? Let's say not.)
 * Leaves result as run container, even if other options are
 * smaller.
 */

void array_run_container_lazy_xor(const array_container_t *src_1,
                                  const run_container_t *src_2,
                                  run_container_t *dst) {
    run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
    int32_t rlepos = 0;
    int32_t arraypos = 0;
    dst->n_runs = 0;

    while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
        if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
            run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
                                                 src_2->runs[rlepos].length);
            rlepos++;
        } else {
            run_container_smart_append_exclusive(dst, src_1->array[arraypos],
                                                 0);
            arraypos++;
        }
    }
    while (arraypos < src_1->cardinality) {
        run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
        arraypos++;
    }
    while (rlepos < src_2->n_runs) {
        run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
                                             src_2->runs[rlepos].length);
        rlepos++;
    }
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any kind of container.
 */

int run_run_container_xor(
    const run_container_t *src_1, const run_container_t *src_2,
    container_t **dst
){
    run_container_t *ans = run_container_create();
    run_container_xor(src_1, src_2, ans);
    uint8_t typecode_after;
    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
    return typecode_after;
}

/*
 * Java implementation (as of May 2016) for array_run, run_run
 * and  bitset_run don't do anything different for inplace.
 * Could adopt the mixed_union.c approach instead (ie, using
 * smart_append_exclusive)
 *
 */

bool array_array_container_xor(
    const array_container_t *src_1, const array_container_t *src_2,
    container_t **dst
){
    int totalCardinality =
        src_1->cardinality + src_2->cardinality;  // upper bound
    if (totalCardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_create_given_capacity(totalCardinality);
        array_container_xor(src_1, src_2, CAST_array(*dst));
        return false;  // not a bitset
    }
    *dst = bitset_container_from_array(src_1);
    bool returnval = true;  // expect a bitset
    bitset_container_t *ourbitset = CAST_bitset(*dst);
    ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
        ourbitset->words, src_1->cardinality, src_2->array, src_2->cardinality);
    if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
        // need to convert!
        *dst = array_container_from_bitset(ourbitset);
        bitset_container_free(ourbitset);
        returnval = false;  // not going to be a bitset
    }

    return returnval;
}

bool array_array_container_lazy_xor(
    const array_container_t *src_1, const array_container_t *src_2,
    container_t **dst
){
    int totalCardinality = src_1->cardinality + src_2->cardinality;
    //
    // We assume that operations involving bitset containers will be faster than
    // operations involving solely array containers, except maybe when array containers
    // are small. Indeed, for example, it is cheap to compute the exclusive union between an array and
    // a bitset container, generally more so than between a large array and another array.
    // So it is advantageous to favour bitset containers during the computation.
    // Of course, if we convert array containers eagerly to bitset containers, we may later
    // need to revert the bitset containers to array containerr to satisfy the Roaring format requirements,
    // but such one-time conversions at the end may not be overly expensive. We arrived to this design
    // based on extensive benchmarking on unions.
    // For XOR/exclusive union, we simply followed the heuristic used by the unions (see  mixed_union.c).
    // Further tuning is possible.
    //
    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
        *dst = array_container_create_given_capacity(totalCardinality);
        if (*dst != NULL)
            array_container_xor(src_1, src_2, CAST_array(*dst));
        return false;  // not a bitset
    }
    *dst = bitset_container_from_array(src_1);
    bool returnval = true;  // expect a bitset (maybe, for XOR??)
    if (*dst != NULL) {
        bitset_container_t *ourbitset = CAST_bitset(*dst);
        bitset_flip_list(ourbitset->words, src_2->array, src_2->cardinality);
        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
    }
    return returnval;
}

/* Compute the xor of src_1 and src_2 and write the result to
 * dst (which has no container initially). Return value is
 * "dst is a bitset"
 */

bool bitset_bitset_container_xor(
    const bitset_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    bitset_container_t *ans = bitset_container_create();
    int card = bitset_container_xor(src_1, src_2, ans);
    if (card <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(ans);
        bitset_container_free(ans);
        return false;  // not bitset
    } else {
        *dst = ans;
        return true;
    }
}

/* Compute the xor of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

bool bitset_array_container_ixor(
    bitset_container_t *src_1, const array_container_t *src_2,
    container_t **dst
){
    *dst = src_1;
    src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
        src_1->words, src_1->cardinality, src_2->array, src_2->cardinality);

    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(src_1);
        bitset_container_free(src_1);
        return false;  // not bitset
    } else
        return true;
}

/* a bunch of in-place, some of which may not *really* be inplace.
 * TODO: write actual inplace routine if efficiency warrants it
 * Anything inplace with a bitset is a good candidate
 */

bool bitset_bitset_container_ixor(
    bitset_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    int card = bitset_container_xor(src_1, src_2, src_1);
    if (card <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(src_1);
        bitset_container_free(src_1);
        return false;  // not bitset
    } else {
        *dst = src_1;
        return true;
    }
}

bool array_bitset_container_ixor(
    array_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    bool ans = array_bitset_container_xor(src_1, src_2, dst);
    array_container_free(src_1);
    return ans;
}

/* Compute the xor of src_1 and src_2 and write the result to
 * dst. Result may be either a bitset or an array container
 * (returns "result is bitset"). dst does not initially have
 * any container, but becomes either a bitset container (return
 * result true) or an array container.
 */

bool run_bitset_container_ixor(
    run_container_t *src_1, const bitset_container_t *src_2,
    container_t **dst
){
    bool ans = run_bitset_container_xor(src_1, src_2, dst);
    run_container_free(src_1);
    return ans;
}

bool bitset_run_container_ixor(
    bitset_container_t *src_1, const run_container_t *src_2,
    container_t **dst
){
    bool ans = run_bitset_container_xor(src_2, src_1, dst);
    bitset_container_free(src_1);
    return ans;
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any kind of container.
 */

int array_run_container_ixor(
    array_container_t *src_1, const run_container_t *src_2,
    container_t **dst
){
    int ans = array_run_container_xor(src_1, src_2, dst);
    array_container_free(src_1);
    return ans;
}

int run_array_container_ixor(
    run_container_t *src_1, const array_container_t *src_2,
    container_t **dst
){
    int ans = array_run_container_xor(src_2, src_1, dst);
    run_container_free(src_1);
    return ans;
}

bool array_array_container_ixor(
    array_container_t *src_1, const array_container_t *src_2,
    container_t **dst
){
    bool ans = array_array_container_xor(src_1, src_2, dst);
    array_container_free(src_1);
    return ans;
}

int run_run_container_ixor(
    run_container_t *src_1, const run_container_t *src_2,
    container_t **dst
){
    int ans = run_run_container_xor(src_1, src_2, dst);
    run_container_free(src_1);
    return ans;
}

#ifdef __cplusplus
} } }  // extern "C" { namespace roaring { namespace internal {
#endif