1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/*
* mixed_union.c
*
*/
#include <assert.h>
#include <string.h>
#include <roaring/bitset_util.h>
#include <roaring/containers/convert.h>
#include <roaring/containers/mixed_union.h>
#include <roaring/containers/perfparameters.h>
#ifdef __cplusplus
extern "C" { namespace roaring { namespace internal {
#endif
/* Compute the union of src_1 and src_2 and write the result to
* dst. */
void array_bitset_container_union(const array_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
dst->cardinality = (int32_t)bitset_set_list_withcard(
dst->words, dst->cardinality, src_1->array, src_1->cardinality);
}
/* Compute the union of src_1 and src_2 and write the result to
* dst. It is allowed for src_2 to be dst. This version does not
* update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
void array_bitset_container_lazy_union(const array_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
bitset_set_list(dst->words, src_1->array, src_1->cardinality);
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
void run_bitset_container_union(const run_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
assert(!run_container_is_full(src_1)); // catch this case upstream
if (src_2 != dst) bitset_container_copy(src_2, dst);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_set_lenrange(dst->words, rle.value, rle.length);
}
dst->cardinality = bitset_container_compute_cardinality(dst);
}
void run_bitset_container_lazy_union(const run_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
assert(!run_container_is_full(src_1)); // catch this case upstream
if (src_2 != dst) bitset_container_copy(src_2, dst);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_set_lenrange(dst->words, rle.value, rle.length);
}
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
// why do we leave the result as a run container??
void array_run_container_union(const array_container_t *src_1,
const run_container_t *src_2,
run_container_t *dst) {
if (run_container_is_full(src_2)) {
run_container_copy(src_2, dst);
return;
}
// TODO: see whether the "2*" is spurious
run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
int32_t rlepos = 0;
int32_t arraypos = 0;
rle16_t previousrle;
if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
rlepos++;
} else {
previousrle =
run_container_append_value_first(dst, src_1->array[arraypos]);
arraypos++;
}
while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
run_container_append(dst, src_2->runs[rlepos], &previousrle);
rlepos++;
} else {
run_container_append_value(dst, src_1->array[arraypos],
&previousrle);
arraypos++;
}
}
if (arraypos < src_1->cardinality) {
while (arraypos < src_1->cardinality) {
run_container_append_value(dst, src_1->array[arraypos],
&previousrle);
arraypos++;
}
} else {
while (rlepos < src_2->n_runs) {
run_container_append(dst, src_2->runs[rlepos], &previousrle);
rlepos++;
}
}
}
void array_run_container_inplace_union(const array_container_t *src_1,
run_container_t *src_2) {
if (run_container_is_full(src_2)) {
return;
}
const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
const int32_t neededcapacity = maxoutput + src_2->n_runs;
if (src_2->capacity < neededcapacity)
run_container_grow(src_2, neededcapacity, true);
memmove(src_2->runs + maxoutput, src_2->runs,
src_2->n_runs * sizeof(rle16_t));
rle16_t *inputsrc2 = src_2->runs + maxoutput;
int32_t rlepos = 0;
int32_t arraypos = 0;
int src2nruns = src_2->n_runs;
src_2->n_runs = 0;
rle16_t previousrle;
if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
rlepos++;
} else {
previousrle =
run_container_append_value_first(src_2, src_1->array[arraypos]);
arraypos++;
}
while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
run_container_append(src_2, inputsrc2[rlepos], &previousrle);
rlepos++;
} else {
run_container_append_value(src_2, src_1->array[arraypos],
&previousrle);
arraypos++;
}
}
if (arraypos < src_1->cardinality) {
while (arraypos < src_1->cardinality) {
run_container_append_value(src_2, src_1->array[arraypos],
&previousrle);
arraypos++;
}
} else {
while (rlepos < src2nruns) {
run_container_append(src_2, inputsrc2[rlepos], &previousrle);
rlepos++;
}
}
}
bool array_array_container_union(
const array_container_t *src_1, const array_container_t *src_2,
container_t **dst
){
int totalCardinality = src_1->cardinality + src_2->cardinality;
if (totalCardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_create_given_capacity(totalCardinality);
if (*dst != NULL) {
array_container_union(src_1, src_2, CAST_array(*dst));
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = CAST_bitset(*dst);
bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
ourbitset->words, src_1->cardinality, src_2->array,
src_2->cardinality);
if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
// need to convert!
*dst = array_container_from_bitset(ourbitset);
bitset_container_free(ourbitset);
returnval = false; // not going to be a bitset
}
}
return returnval;
}
bool array_array_container_inplace_union(
array_container_t *src_1, const array_container_t *src_2,
container_t **dst
){
int totalCardinality = src_1->cardinality + src_2->cardinality;
*dst = NULL;
if (totalCardinality <= DEFAULT_MAX_SIZE) {
if(src_1->capacity < totalCardinality) {
*dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous
if (*dst != NULL) {
array_container_union(src_1, src_2, CAST_array(*dst));
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
} else {
memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
// In theory, we could use fast_union_uint16, but it is unsafe. It fails
// with Intel compilers in particular.
// https://github.com/RoaringBitmap/CRoaring/pull/452
// See report https://github.com/RoaringBitmap/CRoaring/issues/476
src_1->cardinality = (int32_t)union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
src_2->array, src_2->cardinality, src_1->array);
return false; // not a bitset
}
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = CAST_bitset(*dst);
bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
ourbitset->words, src_1->cardinality, src_2->array,
src_2->cardinality);
if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
// need to convert!
if(src_1->capacity < ourbitset->cardinality) {
array_container_grow(src_1, ourbitset->cardinality, false);
}
bitset_extract_setbits_uint16(ourbitset->words, BITSET_CONTAINER_SIZE_IN_WORDS,
src_1->array, 0);
src_1->cardinality = ourbitset->cardinality;
*dst = src_1;
bitset_container_free(ourbitset);
returnval = false; // not going to be a bitset
}
}
return returnval;
}
bool array_array_container_lazy_union(
const array_container_t *src_1, const array_container_t *src_2,
container_t **dst
){
int totalCardinality = src_1->cardinality + src_2->cardinality;
//
// We assume that operations involving bitset containers will be faster than
// operations involving solely array containers, except maybe when array containers
// are small. Indeed, for example, it is cheap to compute the union between an array and
// a bitset container, generally more so than between a large array and another array.
// So it is advantageous to favour bitset containers during the computation.
// Of course, if we convert array containers eagerly to bitset containers, we may later
// need to revert the bitset containers to array containerr to satisfy the Roaring format requirements,
// but such one-time conversions at the end may not be overly expensive. We arrived to this design
// based on extensive benchmarking.
//
if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
*dst = array_container_create_given_capacity(totalCardinality);
if (*dst != NULL) {
array_container_union(src_1, src_2, CAST_array(*dst));
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = CAST_bitset(*dst);
bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
return returnval;
}
bool array_array_container_lazy_inplace_union(
array_container_t *src_1, const array_container_t *src_2,
container_t **dst
){
int totalCardinality = src_1->cardinality + src_2->cardinality;
*dst = NULL;
//
// We assume that operations involving bitset containers will be faster than
// operations involving solely array containers, except maybe when array containers
// are small. Indeed, for example, it is cheap to compute the union between an array and
// a bitset container, generally more so than between a large array and another array.
// So it is advantageous to favour bitset containers during the computation.
// Of course, if we convert array containers eagerly to bitset containers, we may later
// need to revert the bitset containers to array containerr to satisfy the Roaring format requirements,
// but such one-time conversions at the end may not be overly expensive. We arrived to this design
// based on extensive benchmarking.
//
if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
if(src_1->capacity < totalCardinality) {
*dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous
if (*dst != NULL) {
array_container_union(src_1, src_2, CAST_array(*dst));
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
} else {
memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
/*
Next line is safe:
We just need to focus on the reading and writing performed on array1. In `union_vector16`, both vectorized and scalar code still obey the basic rule: read from two inputs, do the union, and then write the output.
Let's say the length(cardinality) of input2 is L2:
```
|<- L2 ->|
array1: [output--- |input 1---|---]
array2: [input 2---]
```
Let's define 3 __m128i pointers, `pos1` starts from `input1`, `pos2` starts from `input2`, these 2 point at the next byte to read, `out` starts from `output`, pointing at the next byte to overwrite.
```
array1: [output--- |input 1---|---]
^ ^
out pos1
array2: [input 2---]
^
pos2
```
The union output always contains less or equal number of elements than all inputs added, so we have:
```
out <= pos1 + pos2
```
therefore:
```
out <= pos1 + L2
```
which means you will not overwrite data beyond pos1, so the data haven't read is safe, and we don't care the data already read.
*/
src_1->cardinality = (int32_t)fast_union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
src_2->array, src_2->cardinality, src_1->array);
return false; // not a bitset
}
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = CAST_bitset(*dst);
bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
return returnval;
}
#ifdef __cplusplus
} } } // extern "C" { namespace roaring { namespace internal {
#endif
|