aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/croaring/src/containers/mixed_andnot.c
blob: 8641e16b95bb6a75b9646eb79531b92290a64c94 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 * mixed_andnot.c.  More methods since operation is not symmetric,
 * except no "wide" andnot , so no lazy options motivated.
 */

#include <assert.h>
#include <string.h>

#include <roaring/array_util.h>
#include <roaring/bitset_util.h>
#include <roaring/containers/containers.h>
#include <roaring/containers/convert.h>
#include <roaring/containers/mixed_andnot.h>
#include <roaring/containers/perfparameters.h>

#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace internal {
#endif

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst, a valid array container that could be the same as dst.*/
void array_bitset_container_andnot(const array_container_t *src_1,
                                   const bitset_container_t *src_2,
                                   array_container_t *dst) {
    // follows Java implementation as of June 2016
    if (dst->capacity < src_1->cardinality) {
        array_container_grow(dst, src_1->cardinality, false);
    }
    int32_t newcard = 0;
    const int32_t origcard = src_1->cardinality;
    for (int i = 0; i < origcard; ++i) {
        uint16_t key = src_1->array[i];
        dst->array[newcard] = key;
        newcard += 1 - bitset_container_contains(src_2, key);
    }
    dst->cardinality = newcard;
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * src_1 */

void array_bitset_container_iandnot(array_container_t *src_1,
                                    const bitset_container_t *src_2) {
    array_bitset_container_andnot(src_1, src_2, src_1);
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst, which does not initially have a valid container.
 * Return true for a bitset result; false for array
 */

bool bitset_array_container_andnot(const bitset_container_t *src_1,
                                   const array_container_t *src_2,
                                   container_t **dst) {
    // Java did this directly, but we have option of asm or avx
    bitset_container_t *result = bitset_container_create();
    bitset_container_copy(src_1, result);
    result->cardinality =
        (int32_t)bitset_clear_list(result->words, (uint64_t)result->cardinality,
                                   src_2->array, (uint64_t)src_2->cardinality);

    // do required type conversions.
    if (result->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(result);
        bitset_container_free(result);
        return false;
    }
    *dst = result;
    return true;
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

bool bitset_array_container_iandnot(bitset_container_t *src_1,
                                    const array_container_t *src_2,
                                    container_t **dst) {
    *dst = src_1;
    src_1->cardinality =
        (int32_t)bitset_clear_list(src_1->words, (uint64_t)src_1->cardinality,
                                   src_2->array, (uint64_t)src_2->cardinality);

    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(src_1);
        bitset_container_free(src_1);
        return false;  // not bitset
    } else
        return true;
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst. Result may be either a bitset or an array container
 * (returns "result is bitset"). dst does not initially have
 * any container, but becomes either a bitset container (return
 * result true) or an array container.
 */

bool run_bitset_container_andnot(const run_container_t *src_1,
                                 const bitset_container_t *src_2,
                                 container_t **dst) {
    // follows the Java implementation as of June 2016
    int card = run_container_cardinality(src_1);
    if (card <= DEFAULT_MAX_SIZE) {
        // must be an array
        array_container_t *answer = array_container_create_given_capacity(card);
        answer->cardinality = 0;
        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
            rle16_t rle = src_1->runs[rlepos];
            for (int run_value = rle.value; run_value <= rle.value + rle.length;
                 ++run_value) {
                if (!bitset_container_get(src_2, (uint16_t)run_value)) {
                    answer->array[answer->cardinality++] = (uint16_t)run_value;
                }
            }
        }
        *dst = answer;
        return false;
    } else {  // we guess it will be a bitset, though have to check guess when
              // done
        bitset_container_t *answer = bitset_container_clone(src_2);

        uint32_t last_pos = 0;
        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
            rle16_t rle = src_1->runs[rlepos];

            uint32_t start = rle.value;
            uint32_t end = start + rle.length + 1;
            bitset_reset_range(answer->words, last_pos, start);
            bitset_flip_range(answer->words, start, end);
            last_pos = end;
        }
        bitset_reset_range(answer->words, last_pos, (uint32_t)(1 << 16));

        answer->cardinality = bitset_container_compute_cardinality(answer);

        if (answer->cardinality <= DEFAULT_MAX_SIZE) {
            *dst = array_container_from_bitset(answer);
            bitset_container_free(answer);
            return false;  // not bitset
        }
        *dst = answer;
        return true;  // bitset
    }
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst. Result may be either a bitset or an array container
 * (returns "result is bitset"). dst does not initially have
 * any container, but becomes either a bitset container (return
 * result true) or an array container.
 */

bool run_bitset_container_iandnot(run_container_t *src_1,
                                  const bitset_container_t *src_2,
                                  container_t **dst) {
    // dummy implementation
    bool ans = run_bitset_container_andnot(src_1, src_2, dst);
    run_container_free(src_1);
    return ans;
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst. Result may be either a bitset or an array container
 * (returns "result is bitset").  dst does not initially have
 * any container, but becomes either a bitset container (return
 * result true) or an array container.
 */

bool bitset_run_container_andnot(const bitset_container_t *src_1,
                                 const run_container_t *src_2,
                                 container_t **dst) {
    // follows Java implementation
    bitset_container_t *result = bitset_container_create();

    bitset_container_copy(src_1, result);
    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
        rle16_t rle = src_2->runs[rlepos];
        bitset_reset_range(result->words, rle.value,
                           rle.value + rle.length + UINT32_C(1));
    }
    result->cardinality = bitset_container_compute_cardinality(result);

    if (result->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(result);
        bitset_container_free(result);
        return false;  // not bitset
    }
    *dst = result;
    return true;  // bitset
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

bool bitset_run_container_iandnot(bitset_container_t *src_1,
                                  const run_container_t *src_2,
                                  container_t **dst) {
    *dst = src_1;

    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
        rle16_t rle = src_2->runs[rlepos];
        bitset_reset_range(src_1->words, rle.value,
                           rle.value + rle.length + UINT32_C(1));
    }
    src_1->cardinality = bitset_container_compute_cardinality(src_1);

    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(src_1);
        bitset_container_free(src_1);
        return false;  // not bitset
    } else
        return true;
}

/* helper. a_out must be a valid array container with adequate capacity.
 * Returns the cardinality of the output container. Partly Based on Java
 * implementation Util.unsignedDifference.
 *
 * TODO: Util.unsignedDifference does not use advanceUntil.  Is it cheaper
 * to avoid advanceUntil?
 */

static int run_array_array_subtract(const run_container_t *rc,
                                    const array_container_t *a_in,
                                    array_container_t *a_out) {
    int out_card = 0;
    int32_t in_array_pos =
        -1;  // since advanceUntil always assumes we start the search AFTER this

    for (int rlepos = 0; rlepos < rc->n_runs; rlepos++) {
        int32_t start = rc->runs[rlepos].value;
        int32_t end = start + rc->runs[rlepos].length + 1;

        in_array_pos = advanceUntil(a_in->array, in_array_pos,
                                    a_in->cardinality, (uint16_t)start);

        if (in_array_pos >= a_in->cardinality) {  // run has no items subtracted
            for (int32_t i = start; i < end; ++i)
                a_out->array[out_card++] = (uint16_t)i;
        } else {
            uint16_t next_nonincluded = a_in->array[in_array_pos];
            if (next_nonincluded >= end) {
                // another case when run goes unaltered
                for (int32_t i = start; i < end; ++i)
                    a_out->array[out_card++] = (uint16_t)i;
                in_array_pos--;  // ensure we see this item again if necessary
            } else {
                for (int32_t i = start; i < end; ++i)
                    if (i != next_nonincluded)
                        a_out->array[out_card++] = (uint16_t)i;
                    else  // 0 should ensure  we don't match
                        next_nonincluded =
                            (in_array_pos + 1 >= a_in->cardinality)
                                ? 0
                                : a_in->array[++in_array_pos];
                in_array_pos--;  // see again
            }
        }
    }
    return out_card;
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any type of container.
 */

int run_array_container_andnot(const run_container_t *src_1,
                               const array_container_t *src_2,
                               container_t **dst) {
    // follows the Java impl as of June 2016

    int card = run_container_cardinality(src_1);
    const int arbitrary_threshold = 32;

    if (card <= arbitrary_threshold) {
        if (src_2->cardinality == 0) {
            *dst = run_container_clone(src_1);
            return RUN_CONTAINER_TYPE;
        }
        // Java's "lazyandNot.toEfficientContainer" thing
        run_container_t *answer = run_container_create_given_capacity(
            card + array_container_cardinality(src_2));

        int rlepos = 0;
        int xrlepos = 0;  // "x" is src_2
        rle16_t rle = src_1->runs[rlepos];
        int32_t start = rle.value;
        int32_t end = start + rle.length + 1;
        int32_t xstart = src_2->array[xrlepos];

        while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
            if (end <= xstart) {
                // output the first run
                answer->runs[answer->n_runs++] =
                    CROARING_MAKE_RLE16(start, end - start - 1);
                rlepos++;
                if (rlepos < src_1->n_runs) {
                    start = src_1->runs[rlepos].value;
                    end = start + src_1->runs[rlepos].length + 1;
                }
            } else if (xstart + 1 <= start) {
                // exit the second run
                xrlepos++;
                if (xrlepos < src_2->cardinality) {
                    xstart = src_2->array[xrlepos];
                }
            } else {
                if (start < xstart) {
                    answer->runs[answer->n_runs++] =
                        CROARING_MAKE_RLE16(start, xstart - start - 1);
                }
                if (xstart + 1 < end) {
                    start = xstart + 1;
                } else {
                    rlepos++;
                    if (rlepos < src_1->n_runs) {
                        start = src_1->runs[rlepos].value;
                        end = start + src_1->runs[rlepos].length + 1;
                    }
                }
            }
        }
        if (rlepos < src_1->n_runs) {
            answer->runs[answer->n_runs++] =
                CROARING_MAKE_RLE16(start, end - start - 1);
            rlepos++;
            if (rlepos < src_1->n_runs) {
                memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
                       (src_1->n_runs - rlepos) * sizeof(rle16_t));
                answer->n_runs += (src_1->n_runs - rlepos);
            }
        }
        uint8_t return_type;
        *dst = convert_run_to_efficient_container(answer, &return_type);
        if (answer != *dst) run_container_free(answer);
        return return_type;
    }
    // else it's a bitmap or array

    if (card <= DEFAULT_MAX_SIZE) {
        array_container_t *ac = array_container_create_given_capacity(card);
        // nb Java code used a generic iterator-based merge to compute
        // difference
        ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
        *dst = ac;
        return ARRAY_CONTAINER_TYPE;
    }
    bitset_container_t *ans = bitset_container_from_run(src_1);
    bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
    return (result_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE);
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

int run_array_container_iandnot(run_container_t *src_1,
                                const array_container_t *src_2,
                                container_t **dst) {
    // dummy implementation same as June 2016 Java
    int ans = run_array_container_andnot(src_1, src_2, dst);
    run_container_free(src_1);
    return ans;
}

/* dst must be a valid array container, allowed to be src_1 */

void array_run_container_andnot(const array_container_t *src_1,
                                const run_container_t *src_2,
                                array_container_t *dst) {
    // basically following Java impl as of June 2016
    if (src_1->cardinality > dst->capacity) {
        array_container_grow(dst, src_1->cardinality, false);
    }

    if (src_2->n_runs == 0) {
        memmove(dst->array, src_1->array,
                sizeof(uint16_t) * src_1->cardinality);
        dst->cardinality = src_1->cardinality;
        return;
    }
    int32_t run_start = src_2->runs[0].value;
    int32_t run_end = run_start + src_2->runs[0].length;
    int which_run = 0;

    uint16_t val = 0;
    int dest_card = 0;
    for (int i = 0; i < src_1->cardinality; ++i) {
        val = src_1->array[i];
        if (val < run_start)
            dst->array[dest_card++] = val;
        else if (val <= run_end) {
            ;  // omitted item
        } else {
            do {
                if (which_run + 1 < src_2->n_runs) {
                    ++which_run;
                    run_start = src_2->runs[which_run].value;
                    run_end = run_start + src_2->runs[which_run].length;

                } else
                    run_start = run_end = (1 << 16) + 1;
            } while (val > run_end);
            --i;
        }
    }
    dst->cardinality = dest_card;
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any kind of container.
 */

void array_run_container_iandnot(array_container_t *src_1,
                                 const run_container_t *src_2) {
    array_run_container_andnot(src_1, src_2, src_1);
}

/* dst does not indicate a valid container initially.  Eventually it
 * can become any kind of container.
 */

int run_run_container_andnot(const run_container_t *src_1,
                             const run_container_t *src_2, container_t **dst) {
    run_container_t *ans = run_container_create();
    run_container_andnot(src_1, src_2, ans);
    uint8_t typecode_after;
    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
    return typecode_after;
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

int run_run_container_iandnot(run_container_t *src_1,
                              const run_container_t *src_2, container_t **dst) {
    // following Java impl as of June 2016 (dummy)
    int ans = run_run_container_andnot(src_1, src_2, dst);
    run_container_free(src_1);
    return ans;
}

/*
 * dst is a valid array container and may be the same as src_1
 */

void array_array_container_andnot(const array_container_t *src_1,
                                  const array_container_t *src_2,
                                  array_container_t *dst) {
    array_container_andnot(src_1, src_2, dst);
}

/* inplace array-array andnot will always be able to reuse the space of
 * src_1 */
void array_array_container_iandnot(array_container_t *src_1,
                                   const array_container_t *src_2) {
    array_container_andnot(src_1, src_2, src_1);
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially). Return value is
 * "dst is a bitset"
 */

bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
                                    const bitset_container_t *src_2,
                                    container_t **dst) {
    bitset_container_t *ans = bitset_container_create();
    int card = bitset_container_andnot(src_1, src_2, ans);
    if (card <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(ans);
        bitset_container_free(ans);
        return false;  // not bitset
    } else {
        *dst = ans;
        return true;
    }
}

/* Compute the andnot of src_1 and src_2 and write the result to
 * dst (which has no container initially).  It will modify src_1
 * to be dst if the result is a bitset.  Otherwise, it will
 * free src_1 and dst will be a new array container.  In both
 * cases, the caller is responsible for deallocating dst.
 * Returns true iff dst is a bitset  */

bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
                                     const bitset_container_t *src_2,
                                     container_t **dst) {
    int card = bitset_container_andnot(src_1, src_2, src_1);
    if (card <= DEFAULT_MAX_SIZE) {
        *dst = array_container_from_bitset(src_1);
        bitset_container_free(src_1);
        return false;  // not bitset
    } else {
        *dst = src_1;
        return true;
    }
}

#ifdef __cplusplus
}
}
}  // extern "C" { namespace roaring { namespace internal {
#endif