aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/croaring/include/roaring/roaring.h
blob: 295bc3cb33a400072e71bdd7f58134f7f31a50d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/*
 * An implementation of Roaring Bitmaps in C.
 */

#ifndef ROARING_H
#define ROARING_H

#include <stdbool.h>
#include <stddef.h>  // for `size_t`
#include <stdint.h>

#include <roaring/roaring_types.h>

// Include other headers after roaring_types.h
#include <roaring/bitset/bitset.h>
#include <roaring/memory.h>
#include <roaring/portability.h>
#include <roaring/roaring_version.h>

#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace api {
#endif

typedef struct roaring_bitmap_s {
    roaring_array_t high_low_container;
} roaring_bitmap_t;

/**
 * Dynamically allocates a new bitmap (initially empty).
 * Returns NULL if the allocation fails.
 * Capacity is a performance hint for how many "containers" the data will need.
 * Client is responsible for calling `roaring_bitmap_free()`.
 */
roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap);

/**
 * Dynamically allocates a new bitmap (initially empty).
 * Returns NULL if the allocation fails.
 * Client is responsible for calling `roaring_bitmap_free()`.
 */
inline roaring_bitmap_t *roaring_bitmap_create(void) {
    return roaring_bitmap_create_with_capacity(0);
}

/**
 * Initialize a roaring bitmap structure in memory controlled by client.
 * Capacity is a performance hint for how many "containers" the data will need.
 * Can return false if auxiliary allocations fail when capacity greater than 0.
 */
bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap);

/**
 * Initialize a roaring bitmap structure in memory controlled by client.
 * The bitmap will be in a "clear" state, with no auxiliary allocations.
 * Since this performs no allocations, the function will not fail.
 */
inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r) {
    roaring_bitmap_init_with_capacity(r, 0);
}

/**
 * Add all the values between min (included) and max (excluded) that are at a
 * distance k*step from min.
 */
roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
                                            uint32_t step);

/**
 * Creates a new bitmap from a pointer of uint32_t integers
 */
roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals);

/*
 * Whether you want to use copy-on-write.
 * Saves memory and avoids copies, but needs more care in a threaded context.
 * Most users should ignore this flag.
 *
 * Note: If you do turn this flag to 'true', enabling COW, then ensure that you
 * do so for all of your bitmaps, since interactions between bitmaps with and
 * without COW is unsafe.
 */
inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r) {
    return r->high_low_container.flags & ROARING_FLAG_COW;
}
inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r, bool cow) {
    if (cow) {
        r->high_low_container.flags |= ROARING_FLAG_COW;
    } else {
        r->high_low_container.flags &= ~ROARING_FLAG_COW;
    }
}

roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
                                            int64_t offset);
/**
 * Describe the inner structure of the bitmap.
 */
void roaring_bitmap_printf_describe(const roaring_bitmap_t *r);

/**
 * Creates a new bitmap from a list of uint32_t integers
 *
 * This function is deprecated, use `roaring_bitmap_from` instead, which
 * doesn't require the number of elements to be passed in.
 *
 * @see roaring_bitmap_from
 */
CROARING_DEPRECATED roaring_bitmap_t *roaring_bitmap_of(size_t n, ...);

#ifdef __cplusplus
/**
 * Creates a new bitmap which contains all values passed in as arguments.
 *
 * To create a bitmap from a variable number of arguments, use the
 * `roaring_bitmap_of_ptr` function instead.
 */
// Use an immediately invoked closure, capturing by reference
// (in case __VA_ARGS__ refers to context outside the closure)
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring_bitmap_from(...)                                              \
    [&]() {                                                                   \
        const uint32_t roaring_bitmap_from_array[] = {0, __VA_ARGS__};        \
        return roaring_bitmap_of_ptr((sizeof(roaring_bitmap_from_array) /     \
                                      sizeof(roaring_bitmap_from_array[0])) - \
                                         1,                                   \
                                     &roaring_bitmap_from_array[1]);          \
    }()
#else
/**
 * Creates a new bitmap which contains all values passed in as arguments.
 *
 * To create a bitmap from a variable number of arguments, use the
 * `roaring_bitmap_of_ptr` function instead.
 */
// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof
// expression, which is an unevaluated context, so it's even safe in the case
// where expressions passed have side effects (roaring64_bitmap_from(my_func(),
// ++i))
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring_bitmap_from(...)                                             \
    roaring_bitmap_of_ptr(                                                   \
        (sizeof((const uint32_t[]){0, __VA_ARGS__}) / sizeof(uint32_t)) - 1, \
        &((const uint32_t[]){0, __VA_ARGS__})[1])
#endif

/**
 * Copies a bitmap (this does memory allocation).
 * The caller is responsible for memory management.
 */
roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r);

/**
 * Copies a bitmap from src to dest. It is assumed that the pointer dest
 * is to an already allocated bitmap. The content of the dest bitmap is
 * freed/deleted.
 *
 * It might be preferable and simpler to call roaring_bitmap_copy except
 * that roaring_bitmap_overwrite can save on memory allocations.
 *
 * Returns true if successful, or false if there was an error. On failure,
 * the dest bitmap is left in a valid, empty state (even if it was not empty
 * before).
 */
bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
                              const roaring_bitmap_t *src);

/**
 * Print the content of the bitmap.
 */
void roaring_bitmap_printf(const roaring_bitmap_t *r);

/**
 * Computes the intersection between two bitmaps and returns new bitmap. The
 * caller is responsible for memory management.
 *
 * Performance hint: if you are computing the intersection between several
 * bitmaps, two-by-two, it is best to start with the smallest bitmap.
 * You may also rely on roaring_bitmap_and_inplace to avoid creating
 * many temporary bitmaps.
 */
roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *r1,
                                     const roaring_bitmap_t *r2);

/**
 * Computes the size of the intersection between two bitmaps.
 */
uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *r1,
                                        const roaring_bitmap_t *r2);

/**
 * Check whether two bitmaps intersect.
 */
bool roaring_bitmap_intersect(const roaring_bitmap_t *r1,
                              const roaring_bitmap_t *r2);

/**
 * Check whether a bitmap and an open range intersect.
 */
bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t x,
                                         uint64_t y);

/**
 * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
 * distance, or the Jaccard similarity coefficient)
 *
 * The Jaccard index is undefined if both bitmaps are empty.
 */
double roaring_bitmap_jaccard_index(const roaring_bitmap_t *r1,
                                    const roaring_bitmap_t *r2);

/**
 * Computes the size of the union between two bitmaps.
 */
uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *r1,
                                       const roaring_bitmap_t *r2);

/**
 * Computes the size of the difference (andnot) between two bitmaps.
 */
uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *r1,
                                           const roaring_bitmap_t *r2);

/**
 * Computes the size of the symmetric difference (xor) between two bitmaps.
 */
uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *r1,
                                        const roaring_bitmap_t *r2);

/**
 * Inplace version of `roaring_bitmap_and()`, modifies r1
 * r1 == r2 is allowed.
 *
 * Performance hint: if you are computing the intersection between several
 * bitmaps, two-by-two, it is best to start with the smallest bitmap.
 */
void roaring_bitmap_and_inplace(roaring_bitmap_t *r1,
                                const roaring_bitmap_t *r2);

/**
 * Computes the union between two bitmaps and returns new bitmap. The caller is
 * responsible for memory management.
 */
roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *r1,
                                    const roaring_bitmap_t *r2);

/**
 * Inplace version of `roaring_bitmap_or(), modifies r1.
 * TODO: decide whether r1 == r2 ok
 */
void roaring_bitmap_or_inplace(roaring_bitmap_t *r1,
                               const roaring_bitmap_t *r2);

/**
 * Compute the union of 'number' bitmaps.
 * Caller is responsible for freeing the result.
 * See also `roaring_bitmap_or_many_heap()`
 */
roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
                                         const roaring_bitmap_t **rs);

/**
 * Compute the union of 'number' bitmaps using a heap. This can sometimes be
 * faster than `roaring_bitmap_or_many() which uses a naive algorithm.
 * Caller is responsible for freeing the result.
 */
roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
                                              const roaring_bitmap_t **rs);

/**
 * Computes the symmetric difference (xor) between two bitmaps
 * and returns new bitmap. The caller is responsible for memory management.
 */
roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *r1,
                                     const roaring_bitmap_t *r2);

/**
 * Inplace version of roaring_bitmap_xor, modifies r1, r1 != r2.
 */
void roaring_bitmap_xor_inplace(roaring_bitmap_t *r1,
                                const roaring_bitmap_t *r2);

/**
 * Compute the xor of 'number' bitmaps.
 * Caller is responsible for freeing the result.
 */
roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
                                          const roaring_bitmap_t **rs);

/**
 * Computes the difference (andnot) between two bitmaps and returns new bitmap.
 * Caller is responsible for freeing the result.
 */
roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *r1,
                                        const roaring_bitmap_t *r2);

/**
 * Inplace version of roaring_bitmap_andnot, modifies r1, r1 != r2.
 */
void roaring_bitmap_andnot_inplace(roaring_bitmap_t *r1,
                                   const roaring_bitmap_t *r2);

/**
 * TODO: consider implementing:
 *
 * "Compute the xor of 'number' bitmaps using a heap. This can sometimes be
 *  faster than roaring_bitmap_xor_many which uses a naive algorithm. Caller is
 *  responsible for freeing the result.""
 *
 * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number,
 *                                                const roaring_bitmap_t **rs);
 */

/**
 * Frees the memory.
 */
void roaring_bitmap_free(const roaring_bitmap_t *r);

/**
 * A bit of context usable with `roaring_bitmap_*_bulk()` functions
 *
 * Should be initialized with `{0}` (or `memset()` to all zeros).
 * Callers should treat it as an opaque type.
 *
 * A context may only be used with a single bitmap
 * (unless re-initialized to zero), and any modification to a bitmap
 * (other than modifications performed with `_bulk()` functions with the context
 * passed) will invalidate any contexts associated with that bitmap.
 */
typedef struct roaring_bulk_context_s {
    ROARING_CONTAINER_T *container;
    int idx;
    uint16_t key;
    uint8_t typecode;
} roaring_bulk_context_t;

/**
 * Add an item, using context from a previous insert for speed optimization.
 *
 * `context` will be used to store information between calls to make bulk
 * operations faster. `*context` should be zero-initialized before the first
 * call to this function.
 *
 * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
 * will invalidate the stored context, calling this function with a non-zero
 * context after doing any modification invokes undefined behavior.
 *
 * In order to exploit this optimization, the caller should call this function
 * with values with the same "key" (high 16 bits of the value) consecutively.
 */
void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
                             roaring_bulk_context_t *context, uint32_t val);

/**
 * Add value n_args from pointer vals, faster than repeatedly calling
 * `roaring_bitmap_add()`
 *
 * In order to exploit this optimization, the caller should attempt to keep
 * values with the same "key" (high 16 bits of the value) as consecutive
 * elements in `vals`
 */
void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
                             const uint32_t *vals);

/**
 * Add value x
 */
void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x);

/**
 * Add value x
 * Returns true if a new value was added, false if the value already existed.
 */
bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x);

/**
 * Add all values in range [min, max]
 */
void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
                                     uint32_t max);

/**
 * Add all values in range [min, max)
 */
inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
                                     uint64_t max) {
    if (max <= min) return;
    roaring_bitmap_add_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
}

/**
 * Remove value x
 */
void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x);

/**
 * Remove all values in range [min, max]
 */
void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
                                        uint32_t max);

/**
 * Remove all values in range [min, max)
 */
inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, uint64_t min,
                                        uint64_t max) {
    if (max <= min) return;
    roaring_bitmap_remove_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
}

/**
 * Remove multiple values
 */
void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
                                const uint32_t *vals);

/**
 * Remove value x
 * Returns true if a new value was removed, false if the value was not existing.
 */
bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x);

/**
 * Check if value is present
 */
bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val);

/**
 * Check whether a range of values from range_start (included)
 * to range_end (excluded) is present
 */
bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
                                   uint64_t range_start, uint64_t range_end);

/**
 * Check if an items is present, using context from a previous insert or search
 * for speed optimization.
 *
 * `context` will be used to store information between calls to make bulk
 * operations faster. `*context` should be zero-initialized before the first
 * call to this function.
 *
 * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
 * will invalidate the stored context, calling this function with a non-zero
 * context after doing any modification invokes undefined behavior.
 *
 * In order to exploit this optimization, the caller should call this function
 * with values with the same "key" (high 16 bits of the value) consecutively.
 */
bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
                                  roaring_bulk_context_t *context,
                                  uint32_t val);

/**
 * Get the cardinality of the bitmap (number of elements).
 */
uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r);

/**
 * Returns the number of elements in the range [range_start, range_end).
 */
uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
                                          uint64_t range_start,
                                          uint64_t range_end);

/**
 * Returns true if the bitmap is empty (cardinality is zero).
 */
bool roaring_bitmap_is_empty(const roaring_bitmap_t *r);

/**
 * Empties the bitmap.  It will have no auxiliary allocations (so if the bitmap
 * was initialized in client memory via roaring_bitmap_init(), then a call to
 * roaring_bitmap_clear() would be enough to "free" it)
 */
void roaring_bitmap_clear(roaring_bitmap_t *r);

/**
 * Convert the bitmap to a sorted array, output in `ans`.
 *
 * Caller is responsible to ensure that there is enough memory allocated, e.g.
 *
 *     ans = malloc(roaring_bitmap_get_cardinality(bitmap) * sizeof(uint32_t));
 */
void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans);

/**
 * Store the bitmap to a bitset. This can be useful for people
 * who need the performance and simplicity of a standard bitset.
 * We assume that the input bitset is originally empty (does not
 * have any set bit).
 *
 *   bitset_t * out = bitset_create();
 *   // if the bitset has content in it, call "bitset_clear(out)"
 *   bool success = roaring_bitmap_to_bitset(mybitmap, out);
 *   // on failure, success will be false.
 *   // You can then query the bitset:
 *   bool is_present = bitset_get(out,  10011 );
 *   // you must free the memory:
 *   bitset_free(out);
 *
 */
bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset);

/**
 * Convert the bitmap to a sorted array from `offset` by `limit`, output in
 * `ans`.
 *
 * Caller is responsible to ensure that there is enough memory allocated, e.g.
 *
 *     ans = malloc(roaring_bitmap_get_cardinality(limit) * sizeof(uint32_t));
 *
 * Return false in case of failure (e.g., insufficient memory)
 */
bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t offset,
                                       size_t limit, uint32_t *ans);

/**
 * Remove run-length encoding even when it is more space efficient.
 * Return whether a change was applied.
 */
bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r);

/**
 * Convert array and bitmap containers to run containers when it is more
 * efficient; also convert from run containers when more space efficient.
 *
 * Returns true if the result has at least one run container.
 * Additional savings might be possible by calling `shrinkToFit()`.
 */
bool roaring_bitmap_run_optimize(roaring_bitmap_t *r);

/**
 * If needed, reallocate memory to shrink the memory usage.
 * Returns the number of bytes saved.
 */
size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r);

/**
 * Write the bitmap to an output pointer, this output buffer should refer to
 * at least `roaring_bitmap_size_in_bytes(r)` allocated bytes.
 *
 * See `roaring_bitmap_portable_serialize()` if you want a format that's
 * compatible with Java and Go implementations.  This format can sometimes be
 * more space efficient than the portable form, e.g. when the data is sparse.
 *
 * Returns how many bytes written, should be `roaring_bitmap_size_in_bytes(r)`.
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf);

/**
 * Use with `roaring_bitmap_serialize()`.
 *
 * (See `roaring_bitmap_portable_deserialize()` if you want a format that's
 * compatible with Java and Go implementations).
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf);

/**
 * Use with `roaring_bitmap_serialize()`.
 *
 * (See `roaring_bitmap_portable_deserialize_safe()` if you want a format that's
 * compatible with Java and Go implementations).
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 *
 * The difference with `roaring_bitmap_deserialize()` is that this function
 * checks that the input buffer is a valid bitmap.  If the buffer is too small,
 * NULL is returned.
 */
roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
                                                  size_t maxbytes);

/**
 * How many bytes are required to serialize this bitmap (NOT compatible
 * with Java and Go versions)
 */
size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r);

/**
 * Read bitmap from a serialized buffer.
 * In case of failure, NULL is returned.
 *
 * This function is unsafe in the sense that if there is no valid serialized
 * bitmap at the pointer, then many bytes could be read, possibly causing a
 * buffer overflow.  See also roaring_bitmap_portable_deserialize_safe().
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf);

/**
 * Read bitmap from a serialized buffer safely (reading up to maxbytes).
 * In case of failure, NULL is returned.
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 *
 * The function itself is safe in the sense that it will not cause buffer
 * overflows. However, for correct operations, it is assumed that the bitmap
 * read was once serialized from a valid bitmap (i.e., it follows the format
 * specification). If you provided an incorrect input (garbage), then the bitmap
 * read may not be in a valid state and following operations may not lead to
 * sensible results. In particular, the serialized array containers need to be
 * in sorted order, and the run containers should be in sorted non-overlapping
 * order. This is is guaranteed to happen when serializing an existing bitmap,
 * but not for random inputs.
 *
 * You may use roaring_bitmap_internal_validate to check the validity of the
 * bitmap prior to using it. You may also use other strategies to check for
 * corrupted inputs (e.g., checksums).
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
                                                           size_t maxbytes);

/**
 * Read bitmap from a serialized buffer.
 * In case of failure, NULL is returned.
 *
 * Bitmap returned by this function can be used in all readonly contexts.
 * Bitmap must be freed as usual, by calling roaring_bitmap_free().
 * Underlying buffer must not be freed or modified while it backs any bitmaps.
 *
 * The function is unsafe in the following ways:
 * 1) It may execute unaligned memory accesses.
 * 2) A buffer overflow may occur if buf does not point to a valid serialized
 *    bitmap.
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf);

/**
 * Check how many bytes would be read (up to maxbytes) at this pointer if there
 * is a bitmap, returns zero if there is no valid bitmap.
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 */
size_t roaring_bitmap_portable_deserialize_size(const char *buf,
                                                size_t maxbytes);

/**
 * How many bytes are required to serialize this bitmap.
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 */
size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r);

/**
 * Write a bitmap to a char buffer.  The output buffer should refer to at least
 * `roaring_bitmap_portable_size_in_bytes(r)` bytes of allocated memory.
 *
 * Returns how many bytes were written which should match
 * `roaring_bitmap_portable_size_in_bytes(r)`.
 *
 * This is meant to be compatible with the Java and Go versions:
 * https://github.com/RoaringBitmap/RoaringFormatSpec
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf);

/*
 * "Frozen" serialization format imitates memory layout of roaring_bitmap_t.
 * Deserialized bitmap is a constant view of the underlying buffer.
 * This significantly reduces amount of allocations and copying required during
 * deserialization.
 * It can be used with memory mapped files.
 * Example can be found in benchmarks/frozen_benchmark.c
 *
 *         [#####] const roaring_bitmap_t *
 *          | | |
 *     +----+ | +-+
 *     |      |   |
 * [#####################################] underlying buffer
 *
 * Note that because frozen serialization format imitates C memory layout
 * of roaring_bitmap_t, it is not fixed. It is different on big/little endian
 * platforms and can be changed in future.
 */

/**
 * Returns number of bytes required to serialize bitmap using frozen format.
 */
size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *r);

/**
 * Serializes bitmap using frozen format.
 * Buffer size must be at least roaring_bitmap_frozen_size_in_bytes().
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *r, char *buf);

/**
 * Creates constant bitmap that is a view of a given buffer.
 * Buffer data should have been written by `roaring_bitmap_frozen_serialize()`
 * Its beginning must also be aligned by 32 bytes.
 * Length must be equal exactly to `roaring_bitmap_frozen_size_in_bytes()`.
 * In case of failure, NULL is returned.
 *
 * Bitmap returned by this function can be used in all readonly contexts.
 * Bitmap must be freed as usual, by calling roaring_bitmap_free().
 * Underlying buffer must not be freed or modified while it backs any bitmaps.
 *
 * This function is endian-sensitive. If you have a big-endian system (e.g., a
 * mainframe IBM s390x), the data format is going to be big-endian and not
 * compatible with little-endian systems.
 */
const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
                                                   size_t length);

/**
 * Iterate over the bitmap elements. The function iterator is called once for
 * all the values with ptr (can be NULL) as the second parameter of each call.
 *
 * `roaring_iterator` is simply a pointer to a function that returns bool
 * (true means that the iteration should continue while false means that it
 * should stop), and takes (uint32_t,void*) as inputs.
 *
 * Returns true if the roaring_iterator returned true throughout (so that all
 * data points were necessarily visited).
 *
 * Iteration is ordered: from the smallest to the largest elements.
 */
bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
                     void *ptr);

bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
                       uint64_t high_bits, void *ptr);

/**
 * Return true if the two bitmaps contain the same elements.
 */
bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
                           const roaring_bitmap_t *r2);

/**
 * Return true if all the elements of r1 are also in r2.
 */
bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
                              const roaring_bitmap_t *r2);

/**
 * Return true if all the elements of r1 are also in r2, and r2 is strictly
 * greater than r1.
 */
bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
                                     const roaring_bitmap_t *r2);

/**
 * (For expert users who seek high performance.)
 *
 * Computes the union between two bitmaps and returns new bitmap. The caller is
 * responsible for memory management.
 *
 * The lazy version defers some computations such as the maintenance of the
 * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
 * after executing "lazy" computations.
 *
 * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result.
 *
 * `bitsetconversion` is a flag which determines whether container-container
 * operations force a bitset conversion.
 */
roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *r1,
                                         const roaring_bitmap_t *r2,
                                         const bool bitsetconversion);

/**
 * (For expert users who seek high performance.)
 *
 * Inplace version of roaring_bitmap_lazy_or, modifies r1.
 *
 * `bitsetconversion` is a flag which determines whether container-container
 * operations force a bitset conversion.
 */
void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *r1,
                                    const roaring_bitmap_t *r2,
                                    const bool bitsetconversion);

/**
 * (For expert users who seek high performance.)
 *
 * Execute maintenance on a bitmap created from `roaring_bitmap_lazy_or()`
 * or modified with `roaring_bitmap_lazy_or_inplace()`.
 */
void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r1);

/**
 * Computes the symmetric difference between two bitmaps and returns new bitmap.
 * The caller is responsible for memory management.
 *
 * The lazy version defers some computations such as the maintenance of the
 * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
 * after executing "lazy" computations.
 *
 * It is safe to repeatedly call `roaring_bitmap_lazy_xor_inplace()` on
 * the result.
 */
roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *r1,
                                          const roaring_bitmap_t *r2);

/**
 * (For expert users who seek high performance.)
 *
 * Inplace version of roaring_bitmap_lazy_xor, modifies r1. r1 != r2
 */
void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *r1,
                                     const roaring_bitmap_t *r2);

/**
 * Compute the negation of the bitmap in the interval [range_start, range_end).
 * The number of negated values is range_end - range_start.
 * Areas outside the range are passed through unchanged.
 */
roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *r1,
                                      uint64_t range_start, uint64_t range_end);

/**
 * compute (in place) the negation of the roaring bitmap within a specified
 * interval: [range_start, range_end). The number of negated values is
 * range_end - range_start.
 * Areas outside the range are passed through unchanged.
 */
void roaring_bitmap_flip_inplace(roaring_bitmap_t *r1, uint64_t range_start,
                                 uint64_t range_end);

/**
 * Selects the element at index 'rank' where the smallest element is at index 0.
 * If the size of the roaring bitmap is strictly greater than rank, then this
 * function returns true and sets element to the element of given rank.
 * Otherwise, it returns false.
 */
bool roaring_bitmap_select(const roaring_bitmap_t *r, uint32_t rank,
                           uint32_t *element);

/**
 * roaring_bitmap_rank returns the number of integers that are smaller or equal
 * to x. Thus if x is the first element, this function will return 1. If
 * x is smaller than the smallest element, this function will return 0.
 *
 * The indexing convention differs between roaring_bitmap_select and
 * roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value
 * as having index 0, whereas roaring_bitmap_rank returns 1 when ranking
 * the smallest value.
 */
uint64_t roaring_bitmap_rank(const roaring_bitmap_t *r, uint32_t x);

/**
 * roaring_bitmap_rank_many is an `Bulk` version of `roaring_bitmap_rank`
 * it puts rank value of each element in `[begin .. end)` to `ans[]`
 *
 * the values in `[begin .. end)` must be sorted in Ascending order;
 * Caller is responsible to ensure that there is enough memory allocated, e.g.
 *
 *     ans = malloc((end-begin) * sizeof(uint64_t));
 */
void roaring_bitmap_rank_many(const roaring_bitmap_t *r, const uint32_t *begin,
                              const uint32_t *end, uint64_t *ans);

/**
 * Returns the index of x in the given roaring bitmap.
 * If the roaring bitmap doesn't contain x , this function will return -1.
 * The difference with rank function is that this function will return -1 when x
 * is not the element of roaring bitmap, but the rank function will return a
 * non-negative number.
 */
int64_t roaring_bitmap_get_index(const roaring_bitmap_t *r, uint32_t x);

/**
 * Returns the smallest value in the set, or UINT32_MAX if the set is empty.
 */
uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *r);

/**
 * Returns the greatest value in the set, or 0 if the set is empty.
 */
uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *r);

/**
 * (For advanced users.)
 *
 * Collect statistics about the bitmap, see roaring_types.h for
 * a description of roaring_statistics_t
 */
void roaring_bitmap_statistics(const roaring_bitmap_t *r,
                               roaring_statistics_t *stat);

/**
 * Perform internal consistency checks. Returns true if the bitmap is
 * consistent. It may be useful to call this after deserializing bitmaps from
 * untrusted sources. If roaring_bitmap_internal_validate returns true, then the
 * bitmap should be consistent and can be trusted not to cause crashes or memory
 * corruption.
 *
 * Note that some operations intentionally leave bitmaps in an inconsistent
 * state temporarily, for example, `roaring_bitmap_lazy_*` functions, until
 * `roaring_bitmap_repair_after_lazy` is called.
 *
 * If reason is non-null, it will be set to a string describing the first
 * inconsistency found if any.
 */
bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
                                      const char **reason);

/*********************
* What follows is code use to iterate through values in a roaring bitmap

roaring_bitmap_t *r =...
roaring_uint32_iterator_t i;
roaring_iterator_create(r, &i);
while(i.has_value) {
  printf("value = %d\n", i.current_value);
  roaring_uint32_iterator_advance(&i);
}

Obviously, if you modify the underlying bitmap, the iterator
becomes invalid. So don't.
*/

/**
 * A struct used to keep iterator state. Users should only access
 * `current_value` and `has_value`, the rest of the type should be treated as
 * opaque.
 */
typedef struct roaring_uint32_iterator_s {
    const roaring_bitmap_t *parent;        // Owner
    const ROARING_CONTAINER_T *container;  // Current container
    uint8_t typecode;                      // Typecode of current container
    int32_t container_index;               // Current container index
    uint32_t highbits;                     // High 16 bits of the current value
    roaring_container_iterator_t container_it;

    uint32_t current_value;
    bool has_value;
} roaring_uint32_iterator_t;

/**
 * Initialize an iterator object that can be used to iterate through the values.
 * If there is a  value, then this iterator points to the first value and
 * `it->has_value` is true. The value is in `it->current_value`.
 */
void roaring_iterator_init(const roaring_bitmap_t *r,
                           roaring_uint32_iterator_t *newit);

/** DEPRECATED, use `roaring_iterator_init`. */
CROARING_DEPRECATED static inline void roaring_init_iterator(
    const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
    roaring_iterator_init(r, newit);
}

/**
 * Initialize an iterator object that can be used to iterate through the values.
 * If there is a value, then this iterator points to the last value and
 * `it->has_value` is true. The value is in `it->current_value`.
 */
void roaring_iterator_init_last(const roaring_bitmap_t *r,
                                roaring_uint32_iterator_t *newit);

/** DEPRECATED, use `roaring_iterator_init_last`. */
CROARING_DEPRECATED static inline void roaring_init_iterator_last(
    const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
    roaring_iterator_init_last(r, newit);
}

/**
 * Create an iterator object that can be used to iterate through the values.
 * Caller is responsible for calling `roaring_free_iterator()`.
 *
 * The iterator is initialized (this function calls `roaring_iterator_init()`)
 * If there is a value, then this iterator points to the first value and
 * `it->has_value` is true.  The value is in `it->current_value`.
 */
roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r);

/** DEPRECATED, use `roaring_iterator_create`. */
CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
roaring_create_iterator(const roaring_bitmap_t *r) {
    return roaring_iterator_create(r);
}

/**
 * Advance the iterator. If there is a new value, then `it->has_value` is true.
 * The new value is in `it->current_value`. Values are traversed in increasing
 * orders. For convenience, returns `it->has_value`.
 *
 * Once `it->has_value` is false, `roaring_uint32_iterator_advance` should not
 * be called on the iterator again. Calling `roaring_uint32_iterator_previous`
 * is allowed.
 */
bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it);

/** DEPRECATED, use `roaring_uint32_iterator_advance`. */
CROARING_DEPRECATED static inline bool roaring_advance_uint32_iterator(
    roaring_uint32_iterator_t *it) {
    return roaring_uint32_iterator_advance(it);
}

/**
 * Decrement the iterator. If there's a new value, then `it->has_value` is true.
 * The new value is in `it->current_value`. Values are traversed in decreasing
 * order. For convenience, returns `it->has_value`.
 *
 * Once `it->has_value` is false, `roaring_uint32_iterator_previous` should not
 * be called on the iterator again. Calling `roaring_uint32_iterator_advance` is
 * allowed.
 */
bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it);

/** DEPRECATED, use `roaring_uint32_iterator_previous`. */
CROARING_DEPRECATED static inline bool roaring_previous_uint32_iterator(
    roaring_uint32_iterator_t *it) {
    return roaring_uint32_iterator_previous(it);
}

/**
 * Move the iterator to the first value >= `val`. If there is a such a value,
 * then `it->has_value` is true. The new value is in `it->current_value`.
 * For convenience, returns `it->has_value`.
 */
bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
                                                uint32_t val);

/** DEPRECATED, use `roaring_uint32_iterator_move_equalorlarger`. */
CROARING_DEPRECATED static inline bool
roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it,
                                           uint32_t val) {
    return roaring_uint32_iterator_move_equalorlarger(it, val);
}

/**
 * Creates a copy of an iterator.
 * Caller must free it.
 */
roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
    const roaring_uint32_iterator_t *it);

/** DEPRECATED, use `roaring_uint32_iterator_copy`. */
CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
roaring_copy_uint32_iterator(const roaring_uint32_iterator_t *it) {
    return roaring_uint32_iterator_copy(it);
}

/**
 * Free memory following `roaring_iterator_create()`
 */
void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it);

/** DEPRECATED, use `roaring_uint32_iterator_free`. */
CROARING_DEPRECATED static inline void roaring_free_uint32_iterator(
    roaring_uint32_iterator_t *it) {
    roaring_uint32_iterator_free(it);
}

/*
 * Reads next ${count} values from iterator into user-supplied ${buf}.
 * Returns the number of read elements.
 * This number can be smaller than ${count}, which means that iterator is
 * drained.
 *
 * This function satisfies semantics of iteration and can be used together with
 * other iterator functions.
 *  - first value is copied from ${it}->current_value
 *  - after function returns, iterator is positioned at the next element
 */
uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
                                      uint32_t *buf, uint32_t count);

/** DEPRECATED, use `roaring_uint32_iterator_read`. */
CROARING_DEPRECATED static inline uint32_t roaring_read_uint32_iterator(
    roaring_uint32_iterator_t *it, uint32_t *buf, uint32_t count) {
    return roaring_uint32_iterator_read(it, buf, count);
}

#ifdef __cplusplus
}
}
}  // extern "C" { namespace roaring { namespace api {
#endif

#endif /* ROARING_H */

#ifdef __cplusplus
/**
 * Best practices for C++ headers is to avoid polluting global scope.
 * But for C compatibility when just `roaring.h` is included building as
 * C++, default to global access for the C public API.
 *
 * BUT when `roaring.hh` is included instead, it sets this flag.  That way
 * explicit namespacing must be used to get the C functions.
 *
 * This is outside the include guard so that if you include BOTH headers,
 * the order won't matter; you still get the global definitions.
 */
#if !defined(ROARING_API_NOT_IN_GLOBAL_NAMESPACE)
using namespace ::roaring::api;
#endif
#endif