1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
/*
* run.h
*
*/
#ifndef INCLUDE_CONTAINERS_RUN_H_
#define INCLUDE_CONTAINERS_RUN_H_
#include <roaring/roaring_types.h> // roaring_iterator
// Include other headers after roaring_types.h
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <roaring/array_util.h> // binarySearch()/memequals() for inlining
#include <roaring/containers/container_defs.h> // container_t, perfparameters
#include <roaring/portability.h>
#ifdef __cplusplus
extern "C" {
namespace roaring {
// Note: in pure C++ code, you should avoid putting `using` in header files
using api::roaring_iterator;
using api::roaring_iterator64;
namespace internal {
#endif
/* struct rle16_s - run length pair
*
* @value: start position of the run
* @length: length of the run is `length + 1`
*
* An RLE pair {v, l} would represent the integers between the interval
* [v, v+l+1], e.g. {3, 2} = [3, 4, 5].
*/
struct rle16_s {
uint16_t value;
uint16_t length;
};
typedef struct rle16_s rle16_t;
#ifdef __cplusplus
#define CROARING_MAKE_RLE16(val, len) \
{ (uint16_t)(val), (uint16_t)(len) } // no tagged structs until c++20
#else
#define CROARING_MAKE_RLE16(val, len) \
(rle16_t) { .value = (uint16_t)(val), .length = (uint16_t)(len) }
#endif
/* struct run_container_s - run container bitmap
*
* @n_runs: number of rle_t pairs in `runs`.
* @capacity: capacity in rle_t pairs `runs` can hold.
* @runs: pairs of rle_t.
*/
STRUCT_CONTAINER(run_container_s) {
int32_t n_runs;
int32_t capacity;
rle16_t *runs;
};
typedef struct run_container_s run_container_t;
#define CAST_run(c) CAST(run_container_t *, c) // safer downcast
#define const_CAST_run(c) CAST(const run_container_t *, c)
#define movable_CAST_run(c) movable_CAST(run_container_t **, c)
/* Create a new run container. Return NULL in case of failure. */
run_container_t *run_container_create(void);
/* Create a new run container with given capacity. Return NULL in case of
* failure. */
run_container_t *run_container_create_given_capacity(int32_t size);
/*
* Shrink the capacity to the actual size, return the number of bytes saved.
*/
int run_container_shrink_to_fit(run_container_t *src);
/* Free memory owned by `run'. */
void run_container_free(run_container_t *run);
/* Duplicate container */
run_container_t *run_container_clone(const run_container_t *src);
/*
* Effectively deletes the value at index index, repacking data.
*/
static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) {
memmove(run->runs + index, run->runs + (1 + index),
(run->n_runs - index - 1) * sizeof(rle16_t));
run->n_runs--;
}
/**
* Good old binary search through rle data
*/
inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray,
uint16_t ikey) {
int32_t low = 0;
int32_t high = lenarray - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint16_t middleValue = array[middleIndex].value;
if (middleValue < ikey) {
low = middleIndex + 1;
} else if (middleValue > ikey) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
/*
* Returns index of the run which contains $ikey
*/
static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray,
uint16_t ikey) {
int32_t low = 0;
int32_t high = lenarray - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint16_t min = array[middleIndex].value;
uint16_t max = array[middleIndex].value + array[middleIndex].length;
if (ikey > max) {
low = middleIndex + 1;
} else if (ikey < min) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
/**
* Returns number of runs which can'be be merged with the key because they
* are less than the key.
* Note that [5,6,7,8] can be merged with the key 9 and won't be counted.
*/
static inline int32_t rle16_count_less(const rle16_t *array, int32_t lenarray,
uint16_t key) {
if (lenarray == 0) return 0;
int32_t low = 0;
int32_t high = lenarray - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint16_t min_value = array[middleIndex].value;
uint16_t max_value =
array[middleIndex].value + array[middleIndex].length;
if (max_value + UINT32_C(1) < key) { // uint32 arithmetic
low = middleIndex + 1;
} else if (key < min_value) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return low;
}
static inline int32_t rle16_count_greater(const rle16_t *array,
int32_t lenarray, uint16_t key) {
if (lenarray == 0) return 0;
int32_t low = 0;
int32_t high = lenarray - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint16_t min_value = array[middleIndex].value;
uint16_t max_value =
array[middleIndex].value + array[middleIndex].length;
if (max_value < key) {
low = middleIndex + 1;
} else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic
high = middleIndex - 1;
} else {
return lenarray - (middleIndex + 1);
}
}
return lenarray - low;
}
/**
* increase capacity to at least min. Whether the
* existing data needs to be copied over depends on copy. If "copy" is false,
* then the new content will be uninitialized, otherwise a copy is made.
*/
void run_container_grow(run_container_t *run, int32_t min, bool copy);
/**
* Moves the data so that we can write data at index
*/
static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) {
/* This function calls realloc + memmove sequentially to move by one index.
* Potentially copying twice the array.
*/
if (run->n_runs + 1 > run->capacity)
run_container_grow(run, run->n_runs + 1, true);
memmove(run->runs + 1 + index, run->runs + index,
(run->n_runs - index) * sizeof(rle16_t));
run->n_runs++;
}
/* Add `pos' to `run'. Returns true if `pos' was not present. */
bool run_container_add(run_container_t *run, uint16_t pos);
/* Remove `pos' from `run'. Returns true if `pos' was present. */
static inline bool run_container_remove(run_container_t *run, uint16_t pos) {
int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
if (index >= 0) {
int32_t le = run->runs[index].length;
if (le == 0) {
recoverRoomAtIndex(run, (uint16_t)index);
} else {
run->runs[index].value++;
run->runs[index].length--;
}
return true;
}
index = -index - 2; // points to preceding value, possibly -1
if (index >= 0) { // possible match
int32_t offset = pos - run->runs[index].value;
int32_t le = run->runs[index].length;
if (offset < le) {
// need to break in two
run->runs[index].length = (uint16_t)(offset - 1);
// need to insert
uint16_t newvalue = pos + 1;
int32_t newlength = le - offset - 1;
makeRoomAtIndex(run, (uint16_t)(index + 1));
run->runs[index + 1].value = newvalue;
run->runs[index + 1].length = (uint16_t)newlength;
return true;
} else if (offset == le) {
run->runs[index].length--;
return true;
}
}
// no match
return false;
}
/* Check whether `pos' is present in `run'. */
inline bool run_container_contains(const run_container_t *run, uint16_t pos) {
int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
if (index >= 0) return true;
index = -index - 2; // points to preceding value, possibly -1
if (index != -1) { // possible match
int32_t offset = pos - run->runs[index].value;
int32_t le = run->runs[index].length;
if (offset <= le) return true;
}
return false;
}
/*
* Check whether all positions in a range of positions from pos_start (included)
* to pos_end (excluded) is present in `run'.
*/
static inline bool run_container_contains_range(const run_container_t *run,
uint32_t pos_start,
uint32_t pos_end) {
uint32_t count = 0;
int32_t index =
interleavedBinarySearch(run->runs, run->n_runs, (uint16_t)pos_start);
if (index < 0) {
index = -index - 2;
if ((index == -1) ||
((pos_start - run->runs[index].value) > run->runs[index].length)) {
return false;
}
}
for (int32_t i = index; i < run->n_runs; ++i) {
const uint32_t stop = run->runs[i].value + run->runs[i].length;
if (run->runs[i].value >= pos_end) break;
if (stop >= pos_end) {
count += (((pos_end - run->runs[i].value) > 0)
? (pos_end - run->runs[i].value)
: 0);
break;
}
const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0;
count += (min < run->runs[i].length) ? min : run->runs[i].length;
}
return count >= (pos_end - pos_start - 1);
}
/* Get the cardinality of `run'. Requires an actual computation. */
int run_container_cardinality(const run_container_t *run);
/* Card > 0?, see run_container_empty for the reverse */
static inline bool run_container_nonzero_cardinality(
const run_container_t *run) {
return run->n_runs > 0; // runs never empty
}
/* Card == 0?, see run_container_nonzero_cardinality for the reverse */
static inline bool run_container_empty(const run_container_t *run) {
return run->n_runs == 0; // runs never empty
}
/* Copy one container into another. We assume that they are distinct. */
void run_container_copy(const run_container_t *src, run_container_t *dst);
/**
* Append run described by vl to the run container, possibly merging.
* It is assumed that the run would be inserted at the end of the container, no
* check is made.
* It is assumed that the run container has the necessary capacity: caller is
* responsible for checking memory capacity.
*
*
* This is not a safe function, it is meant for performance: use with care.
*/
static inline void run_container_append(run_container_t *run, rle16_t vl,
rle16_t *previousrl) {
const uint32_t previousend = previousrl->value + previousrl->length;
if (vl.value > previousend + 1) { // we add a new one
run->runs[run->n_runs] = vl;
run->n_runs++;
*previousrl = vl;
} else {
uint32_t newend = vl.value + vl.length + UINT32_C(1);
if (newend > previousend) { // we merge
previousrl->length = (uint16_t)(newend - 1 - previousrl->value);
run->runs[run->n_runs - 1] = *previousrl;
}
}
}
/**
* Like run_container_append but it is assumed that the content of run is empty.
*/
static inline rle16_t run_container_append_first(run_container_t *run,
rle16_t vl) {
run->runs[run->n_runs] = vl;
run->n_runs++;
return vl;
}
/**
* append a single value given by val to the run container, possibly merging.
* It is assumed that the value would be inserted at the end of the container,
* no check is made.
* It is assumed that the run container has the necessary capacity: caller is
* responsible for checking memory capacity.
*
* This is not a safe function, it is meant for performance: use with care.
*/
static inline void run_container_append_value(run_container_t *run,
uint16_t val,
rle16_t *previousrl) {
const uint32_t previousend = previousrl->value + previousrl->length;
if (val > previousend + 1) { // we add a new one
*previousrl = CROARING_MAKE_RLE16(val, 0);
run->runs[run->n_runs] = *previousrl;
run->n_runs++;
} else if (val == previousend + 1) { // we merge
previousrl->length++;
run->runs[run->n_runs - 1] = *previousrl;
}
}
/**
* Like run_container_append_value but it is assumed that the content of run is
* empty.
*/
static inline rle16_t run_container_append_value_first(run_container_t *run,
uint16_t val) {
rle16_t newrle = CROARING_MAKE_RLE16(val, 0);
run->runs[run->n_runs] = newrle;
run->n_runs++;
return newrle;
}
/* Check whether the container spans the whole chunk (cardinality = 1<<16).
* This check can be done in constant time (inexpensive). */
static inline bool run_container_is_full(const run_container_t *run) {
rle16_t vl = run->runs[0];
return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF);
}
/* Compute the union of `src_1' and `src_2' and write the result to `dst'
* It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_union(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst);
/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */
void run_container_union_inplace(run_container_t *src_1,
const run_container_t *src_2);
/* Compute the intersection of src_1 and src_2 and write the result to
* dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_intersection(const run_container_t *src_1,
const run_container_t *src_2,
run_container_t *dst);
/* Compute the size of the intersection of src_1 and src_2 . */
int run_container_intersection_cardinality(const run_container_t *src_1,
const run_container_t *src_2);
/* Check whether src_1 and src_2 intersect. */
bool run_container_intersect(const run_container_t *src_1,
const run_container_t *src_2);
/* Compute the symmetric difference of `src_1' and `src_2' and write the result
* to `dst'
* It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_xor(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst);
/*
* Write out the 16-bit integers contained in this container as a list of 32-bit
* integers using base
* as the starting value (it might be expected that base has zeros in its 16
* least significant bits).
* The function returns the number of values written.
* The caller is responsible for allocating enough memory in out.
*/
int run_container_to_uint32_array(void *vout, const run_container_t *cont,
uint32_t base);
/*
* Print this container using printf (useful for debugging).
*/
void run_container_printf(const run_container_t *v);
/*
* Print this container using printf as a comma-separated list of 32-bit
* integers starting at base.
*/
void run_container_printf_as_uint32_array(const run_container_t *v,
uint32_t base);
bool run_container_validate(const run_container_t *run, const char **reason);
/**
* Return the serialized size in bytes of a container having "num_runs" runs.
*/
static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) {
return sizeof(uint16_t) +
sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries.
}
bool run_container_iterate(const run_container_t *cont, uint32_t base,
roaring_iterator iterator, void *ptr);
bool run_container_iterate64(const run_container_t *cont, uint32_t base,
roaring_iterator64 iterator, uint64_t high_bits,
void *ptr);
/**
* Writes the underlying array to buf, outputs how many bytes were written.
* This is meant to be byte-by-byte compatible with the Java and Go versions of
* Roaring.
* The number of bytes written should be run_container_size_in_bytes(container).
*/
int32_t run_container_write(const run_container_t *container, char *buf);
/**
* Reads the instance from buf, outputs how many bytes were read.
* This is meant to be byte-by-byte compatible with the Java and Go versions of
* Roaring.
* The number of bytes read should be bitset_container_size_in_bytes(container).
* The cardinality parameter is provided for consistency with other containers,
* but
* it might be effectively ignored..
*/
int32_t run_container_read(int32_t cardinality, run_container_t *container,
const char *buf);
/**
* Return the serialized size in bytes of a container (see run_container_write).
* This is meant to be compatible with the Java and Go versions of Roaring.
*/
ALLOW_UNALIGNED
static inline int32_t run_container_size_in_bytes(
const run_container_t *container) {
return run_container_serialized_size_in_bytes(container->n_runs);
}
/**
* Return true if the two containers have the same content.
*/
ALLOW_UNALIGNED
static inline bool run_container_equals(const run_container_t *container1,
const run_container_t *container2) {
if (container1->n_runs != container2->n_runs) {
return false;
}
return memequals(container1->runs, container2->runs,
container1->n_runs * sizeof(rle16_t));
}
/**
* Return true if container1 is a subset of container2.
*/
bool run_container_is_subset(const run_container_t *container1,
const run_container_t *container2);
/**
* Used in a start-finish scan that appends segments, for XOR and NOT
*/
void run_container_smart_append_exclusive(run_container_t *src,
const uint16_t start,
const uint16_t length);
/**
* The new container consists of a single run [start,stop).
* It is required that stop>start, the caller is responsability for this check.
* It is required that stop <= (1<<16), the caller is responsability for this
* check. The cardinality of the created container is stop - start. Returns NULL
* on failure
*/
static inline run_container_t *run_container_create_range(uint32_t start,
uint32_t stop) {
run_container_t *rc = run_container_create_given_capacity(1);
if (rc) {
rle16_t r;
r.value = (uint16_t)start;
r.length = (uint16_t)(stop - start - 1);
run_container_append_first(rc, r);
}
return rc;
}
/**
* If the element of given rank is in this container, supposing that the first
* element has rank start_rank, then the function returns true and sets element
* accordingly.
* Otherwise, it returns false and update start_rank.
*/
bool run_container_select(const run_container_t *container,
uint32_t *start_rank, uint32_t rank,
uint32_t *element);
/* Compute the difference of src_1 and src_2 and write the result to
* dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_andnot(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst);
void run_container_offset(const run_container_t *c, container_t **loc,
container_t **hic, uint16_t offset);
/* Returns the smallest value (assumes not empty) */
inline uint16_t run_container_minimum(const run_container_t *run) {
if (run->n_runs == 0) return 0;
return run->runs[0].value;
}
/* Returns the largest value (assumes not empty) */
inline uint16_t run_container_maximum(const run_container_t *run) {
if (run->n_runs == 0) return 0;
return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length;
}
/* Returns the number of values equal or smaller than x */
int run_container_rank(const run_container_t *arr, uint16_t x);
/* bulk version of run_container_rank(); return number of consumed elements */
uint32_t run_container_rank_many(const run_container_t *arr,
uint64_t start_rank, const uint32_t *begin,
const uint32_t *end, uint64_t *ans);
/* Returns the index of x, if not exsist return -1 */
int run_container_get_index(const run_container_t *arr, uint16_t x);
/* Returns the index of the first run containing a value at least as large as x,
* or -1 */
inline int run_container_index_equalorlarger(const run_container_t *arr,
uint16_t x) {
int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x);
if (index >= 0) return index;
index = -index - 2; // points to preceding run, possibly -1
if (index != -1) { // possible match
int32_t offset = x - arr->runs[index].value;
int32_t le = arr->runs[index].length;
if (offset <= le) return index;
}
index += 1;
if (index < arr->n_runs) {
return index;
}
return -1;
}
/*
* Add all values in range [min, max] using hint.
*/
static inline void run_container_add_range_nruns(run_container_t *run,
uint32_t min, uint32_t max,
int32_t nruns_less,
int32_t nruns_greater) {
int32_t nruns_common = run->n_runs - nruns_less - nruns_greater;
if (nruns_common == 0) {
makeRoomAtIndex(run, (uint16_t)nruns_less);
run->runs[nruns_less].value = (uint16_t)min;
run->runs[nruns_less].length = (uint16_t)(max - min);
} else {
uint32_t common_min = run->runs[nruns_less].value;
uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value +
run->runs[nruns_less + nruns_common - 1].length;
uint32_t result_min = (common_min < min) ? common_min : min;
uint32_t result_max = (common_max > max) ? common_max : max;
run->runs[nruns_less].value = (uint16_t)result_min;
run->runs[nruns_less].length = (uint16_t)(result_max - result_min);
memmove(&(run->runs[nruns_less + 1]),
&(run->runs[run->n_runs - nruns_greater]),
nruns_greater * sizeof(rle16_t));
run->n_runs = nruns_less + 1 + nruns_greater;
}
}
/**
* Add all values in range [min, max]. This function is currently unused
* and left as documentation.
*/
/*static inline void run_container_add_range(run_container_t* run,
uint32_t min, uint32_t max) {
int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
int32_t nruns_less = rle16_count_less(run->runs, run->n_runs -
nruns_greater, min); run_container_add_range_nruns(run, min, max, nruns_less,
nruns_greater);
}*/
/**
* Shifts last $count elements either left (distance < 0) or right (distance >
* 0)
*/
static inline void run_container_shift_tail(run_container_t *run, int32_t count,
int32_t distance) {
if (distance > 0) {
if (run->capacity < count + distance) {
run_container_grow(run, count + distance, true);
}
}
int32_t srcpos = run->n_runs - count;
int32_t dstpos = srcpos + distance;
memmove(&(run->runs[dstpos]), &(run->runs[srcpos]),
sizeof(rle16_t) * count);
run->n_runs += distance;
}
/**
* Remove all elements in range [min, max]
*/
static inline void run_container_remove_range(run_container_t *run,
uint32_t min, uint32_t max) {
int32_t first = rle16_find_run(run->runs, run->n_runs, (uint16_t)min);
int32_t last = rle16_find_run(run->runs, run->n_runs, (uint16_t)max);
if (first >= 0 && min > run->runs[first].value &&
max < ((uint32_t)run->runs[first].value +
(uint32_t)run->runs[first].length)) {
// split this run into two adjacent runs
// right subinterval
makeRoomAtIndex(run, (uint16_t)(first + 1));
run->runs[first + 1].value = (uint16_t)(max + 1);
run->runs[first + 1].length =
(uint16_t)((run->runs[first].value + run->runs[first].length) -
(max + 1));
// left subinterval
run->runs[first].length =
(uint16_t)((min - 1) - run->runs[first].value);
return;
}
// update left-most partial run
if (first >= 0) {
if (min > run->runs[first].value) {
run->runs[first].length =
(uint16_t)((min - 1) - run->runs[first].value);
first++;
}
} else {
first = -first - 1;
}
// update right-most run
if (last >= 0) {
uint16_t run_max = run->runs[last].value + run->runs[last].length;
if (run_max > max) {
run->runs[last].value = (uint16_t)(max + 1);
run->runs[last].length = (uint16_t)(run_max - (max + 1));
last--;
}
} else {
last = (-last - 1) - 1;
}
// remove intermediate runs
if (first <= last) {
run_container_shift_tail(run, run->n_runs - (last + 1),
-(last - first + 1));
}
}
#ifdef __cplusplus
}
}
} // extern "C" { namespace roaring { namespace internal {
#endif
#endif /* INCLUDE_CONTAINERS_RUN_H_ */
|