1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
|
/**
* A C++ header for 64-bit Roaring Bitmaps,
* implemented by way of a map of many
* 32-bit Roaring Bitmaps.
*
* Reference (format specification) :
* https://github.com/RoaringBitmap/RoaringFormatSpec#extention-for-64-bit-implementations
*/
#ifndef INCLUDE_ROARING_64_MAP_HH_
#define INCLUDE_ROARING_64_MAP_HH_
#include <algorithm>
#include <cinttypes> // PRIu64 macro
#include <cstdarg> // for va_list handling in bitmapOf()
#include <cstdio> // for std::printf() in the printf() method
#include <cstring> // for std::memcpy()
#include <functional>
#include <initializer_list>
#include <limits>
#include <map>
#include <new>
#include <numeric>
#include <queue>
#include <stdexcept>
#include <string>
#include <utility>
#include "roaring.hh"
namespace roaring {
using roaring::Roaring;
class Roaring64MapSetBitBiDirectionalIterator;
// For backwards compatibility; there used to be two kinds of iterators
// (forward and bidirectional) and now there's only one.
typedef Roaring64MapSetBitBiDirectionalIterator
Roaring64MapSetBitForwardIterator;
class Roaring64Map {
typedef api::roaring_bitmap_t roaring_bitmap_t;
public:
/**
* Create an empty bitmap
*/
Roaring64Map() = default;
/**
* Construct a bitmap from a list of 32-bit integer values.
*/
Roaring64Map(size_t n, const uint32_t *data) { addMany(n, data); }
/**
* Construct a bitmap from a list of 64-bit integer values.
*/
Roaring64Map(size_t n, const uint64_t *data) { addMany(n, data); }
/**
* Construct a bitmap from an initializer list.
*/
Roaring64Map(std::initializer_list<uint64_t> l) {
addMany(l.size(), l.begin());
}
/**
* Construct a 64-bit map from a 32-bit one
*/
explicit Roaring64Map(const Roaring &r) { emplaceOrInsert(0, r); }
/**
* Construct a 64-bit map from a 32-bit rvalue
*/
explicit Roaring64Map(Roaring &&r) { emplaceOrInsert(0, std::move(r)); }
/**
* Construct a roaring object from the C struct.
*
* Passing a NULL point is unsafe.
*/
explicit Roaring64Map(roaring_bitmap_t *s) {
emplaceOrInsert(0, Roaring(s));
}
Roaring64Map(const Roaring64Map &r) = default;
Roaring64Map(Roaring64Map &&r) noexcept = default;
/**
* Copy assignment operator.
*/
Roaring64Map &operator=(const Roaring64Map &r) = default;
/**
* Move assignment operator.
*/
Roaring64Map &operator=(Roaring64Map &&r) noexcept = default;
/**
* Assignment from an initializer list.
*/
Roaring64Map &operator=(std::initializer_list<uint64_t> l) {
// Delegate to move assignment operator
*this = Roaring64Map(l);
return *this;
}
/**
* Construct a bitmap from a list of uint64_t values.
*/
static Roaring64Map bitmapOf(size_t n...) {
Roaring64Map ans;
va_list vl;
va_start(vl, n);
for (size_t i = 0; i < n; i++) {
ans.add(va_arg(vl, uint64_t));
}
va_end(vl);
return ans;
}
/**
* Construct a bitmap from a list of uint64_t values.
* E.g., bitmapOfList({1,2,3}).
*/
static Roaring64Map bitmapOfList(std::initializer_list<uint64_t> l) {
Roaring64Map ans;
ans.addMany(l.size(), l.begin());
return ans;
}
/**
* Adds value x.
*/
void add(uint32_t x) { lookupOrCreateInner(0).add(x); }
/**
* Adds value x.
*/
void add(uint64_t x) { lookupOrCreateInner(highBytes(x)).add(lowBytes(x)); }
/**
* Adds value x.
* Returns true if a new value was added, false if the value was already
* present.
*/
bool addChecked(uint32_t x) { return lookupOrCreateInner(0).addChecked(x); }
/**
* Adds value x.
* Returns true if a new value was added, false if the value was already
* present.
*/
bool addChecked(uint64_t x) {
return lookupOrCreateInner(highBytes(x)).addChecked(lowBytes(x));
}
/**
* Adds all values in the half-open interval [min, max).
*/
void addRange(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
addRangeClosed(min, max - 1);
}
/**
* Adds all values in the closed interval [min, max].
*/
void addRangeClosed(uint32_t min, uint32_t max) {
lookupOrCreateInner(0).addRangeClosed(min, max);
}
/**
* Adds all values in the closed interval [min, max]
*/
void addRangeClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// Fill in any nonexistent slots with empty Roarings. This simplifies
// the logic below, allowing it to simply iterate over the map between
// 'start_high' and 'end_high' in a linear fashion.
auto current_iter = ensureRangePopulated(start_high, end_high);
// If start and end land on the same inner bitmap, then we can do the
// whole operation in one call.
if (start_high == end_high) {
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(start_low, end_low);
return;
}
// Because start and end don't land on the same inner bitmap,
// we need to do this in multiple steps:
// 1. Partially fill the first bitmap with values from the closed
// interval [start_low, uint32_max]
// 2. Fill intermediate bitmaps completely: [0, uint32_max]
// 3. Partially fill the last bitmap with values from the closed
// interval [0, end_low]
auto num_intermediate_bitmaps = end_high - start_high - 1;
// Step 1: Partially fill the first bitmap.
{
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(start_low, uint32_max);
++current_iter;
}
// Step 2. Fill intermediate bitmaps completely.
if (num_intermediate_bitmaps != 0) {
auto &first_intermediate = current_iter->second;
first_intermediate.addRangeClosed(0, uint32_max);
++current_iter;
// Now make (num_intermediate_bitmaps - 1) copies of this.
for (uint32_t i = 1; i != num_intermediate_bitmaps; ++i) {
auto &next_intermediate = current_iter->second;
next_intermediate = first_intermediate;
++current_iter;
}
}
// Step 3: Partially fill the last bitmap.
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(0, end_low);
}
/**
* Adds 'n_args' values from the contiguous memory range starting at 'vals'.
*/
void addMany(size_t n_args, const uint32_t *vals) {
lookupOrCreateInner(0).addMany(n_args, vals);
}
/**
* Adds 'n_args' values from the contiguous memory range starting at 'vals'.
*/
void addMany(size_t n_args, const uint64_t *vals) {
// Potentially reduce outer map lookups by optimistically
// assuming that adjacent values will belong to the same inner bitmap.
Roaring *last_inner_bitmap = nullptr;
uint32_t last_value_high = 0;
BulkContext last_bulk_context;
for (size_t lcv = 0; lcv < n_args; lcv++) {
auto value = vals[lcv];
auto value_high = highBytes(value);
auto value_low = lowBytes(value);
if (last_inner_bitmap == nullptr || value_high != last_value_high) {
last_inner_bitmap = &lookupOrCreateInner(value_high);
last_value_high = value_high;
last_bulk_context = BulkContext{};
}
last_inner_bitmap->addBulk(last_bulk_context, value_low);
}
}
/**
* Removes value x.
*/
void remove(uint32_t x) {
auto iter = roarings.begin();
// Since x is a uint32_t, highbytes(x) == 0. The inner bitmap we are
// looking for, if it exists, will be at the first slot of 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return;
}
auto &bitmap = iter->second;
bitmap.remove(x);
eraseIfEmpty(iter);
}
/**
* Removes value x.
*/
void remove(uint64_t x) {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return;
}
auto &bitmap = iter->second;
bitmap.remove(lowBytes(x));
eraseIfEmpty(iter);
}
/**
* Removes value x
* Returns true if a new value was removed, false if the value was not
* present.
*/
bool removeChecked(uint32_t x) {
auto iter = roarings.begin();
// Since x is a uint32_t, highbytes(x) == 0. The inner bitmap we are
// looking for, if it exists, will be at the first slot of 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return false;
}
auto &bitmap = iter->second;
if (!bitmap.removeChecked(x)) {
return false;
}
eraseIfEmpty(iter);
return true;
}
/**
* Remove value x
* Returns true if a new value was removed, false if the value was not
* present.
*/
bool removeChecked(uint64_t x) {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return false;
}
auto &bitmap = iter->second;
if (!bitmap.removeChecked(lowBytes(x))) {
return false;
}
eraseIfEmpty(iter);
return true;
}
/**
* Removes all values in the half-open interval [min, max).
*/
void removeRange(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
return removeRangeClosed(min, max - 1);
}
/**
* Removes all values in the closed interval [min, max].
*/
void removeRangeClosed(uint32_t min, uint32_t max) {
auto iter = roarings.begin();
// Since min and max are uint32_t, highbytes(min or max) == 0. The inner
// bitmap we are looking for, if it exists, will be at the first slot of
// 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return;
}
auto &bitmap = iter->second;
bitmap.removeRangeClosed(min, max);
eraseIfEmpty(iter);
}
/**
* Removes all values in the closed interval [min, max].
*/
void removeRangeClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// If the outer map is empty, end_high is less than the first key,
// or start_high is greater than the last key, then exit now because
// there is no work to do.
if (roarings.empty() || end_high < roarings.cbegin()->first ||
start_high > (roarings.crbegin())->first) {
return;
}
// If we get here, start_iter points to the first entry in the outer map
// with key >= start_high. Such an entry is known to exist (i.e. the
// iterator will not be equal to end()) because start_high <= the last
// key in the map (thanks to the above if statement).
auto start_iter = roarings.lower_bound(start_high);
// end_iter points to the first entry in the outer map with
// key >= end_high, if such a key exists. Otherwise, it equals end().
auto end_iter = roarings.lower_bound(end_high);
// Note that the 'lower_bound' method will find the start and end slots,
// if they exist; otherwise it will find the next-higher slots.
// In the case where 'start' landed on an existing slot, we need to do a
// partial erase of that slot, and likewise for 'end'. But all the slots
// in between can be fully erased. More precisely:
//
// 1. If the start point falls on an existing entry, there are two
// subcases:
// a. if the end point falls on that same entry, remove the closed
// interval [start_low, end_low] from that entry and we are done.
// b. Otherwise, remove the closed interval [start_low, uint32_max]
// from that entry, advance start_iter, and fall through to
// step 2.
// 2. Completely erase all slots in the half-open interval
// [start_iter, end_iter)
// 3. If the end point falls on an existing entry, remove the closed
// interval [0, end_high] from it.
// Step 1. If the start point falls on an existing entry...
if (start_iter->first == start_high) {
auto &start_inner = start_iter->second;
// 1a. if the end point falls on that same entry...
if (start_iter == end_iter) {
start_inner.removeRangeClosed(start_low, end_low);
eraseIfEmpty(start_iter);
return;
}
// 1b. Otherwise, remove the closed range [start_low, uint32_max]...
start_inner.removeRangeClosed(start_low, uint32_max);
// Advance start_iter, but keep the old value so we can check the
// bitmap we just modified for emptiness and erase if it necessary.
auto temp = start_iter++;
eraseIfEmpty(temp);
}
// 2. Completely erase all slots in the half-open interval...
roarings.erase(start_iter, end_iter);
// 3. If the end point falls on an existing entry...
if (end_iter != roarings.end() && end_iter->first == end_high) {
auto &end_inner = end_iter->second;
end_inner.removeRangeClosed(0, end_low);
eraseIfEmpty(end_iter);
}
}
/**
* Clears the bitmap.
*/
void clear() { roarings.clear(); }
/**
* Return the largest value (if not empty)
*/
uint64_t maximum() const {
for (auto roaring_iter = roarings.crbegin();
roaring_iter != roarings.crend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.maximum());
}
}
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::min)();
}
/**
* Return the smallest value (if not empty)
*/
uint64_t minimum() const {
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roarings.cend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.minimum());
}
}
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::max)();
}
/**
* Check if value x is present
*/
bool contains(uint32_t x) const {
auto iter = roarings.find(0);
if (iter == roarings.end()) {
return false;
}
return iter->second.contains(x);
}
bool contains(uint64_t x) const {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return false;
}
return iter->second.contains(lowBytes(x));
}
/**
* Compute the intersection of the current bitmap and the provided bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmap.
*/
Roaring64Map &operator&=(const Roaring64Map &other) {
if (this == &other) {
// ANDing *this with itself is a no-op.
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self & other) work to do
// --------------------------------------------
// absent absent empty None
// absent present empty None
// present absent empty Erase self
// present present empty or not Intersect self with other, but
// erase self if result is empty.
//
// Because there is only work to do when a key is present in 'self', the
// main for loop iterates over entries in 'self'.
decltype(roarings.begin()) self_next;
for (auto self_iter = roarings.begin(); self_iter != roarings.end();
self_iter = self_next) {
// Do the 'next' operation now, so we don't have to worry about
// invalidation of self_iter down below with the 'erase' operation.
self_next = std::next(self_iter);
auto self_key = self_iter->first;
auto &self_bitmap = self_iter->second;
auto other_iter = other.roarings.find(self_key);
if (other_iter == other.roarings.end()) {
// 'other' doesn't have self_key. In the logic table above,
// this reflects the case (self.present & other.absent).
// So, erase self.
roarings.erase(self_iter);
continue;
}
// Both sides have self_key. In the logic table above, this reflects
// the case (self.present & other.present). So, intersect self with
// other.
const auto &other_bitmap = other_iter->second;
self_bitmap &= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if intersection is empty, remove it altogether.
roarings.erase(self_iter);
}
}
return *this;
}
/**
* Compute the difference between the current bitmap and the provided
* bitmap, writing the result in the current bitmap. The provided bitmap
* is not modified.
*/
Roaring64Map &operator-=(const Roaring64Map &other) {
if (this == &other) {
// Subtracting *this from itself results in the empty map.
roarings.clear();
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self - other) work to do
// --------------------------------------------
// absent absent empty None
// absent present empty None
// present absent unchanged None
// present present empty or not Subtract other from self, but
// erase self if result is empty
//
// Because there is only work to do when a key is present in both 'self'
// and 'other', the main while loop ping-pongs back and forth until it
// finds the next key that is the same on both sides.
auto self_iter = roarings.begin();
auto other_iter = other.roarings.cbegin();
while (self_iter != roarings.end() &&
other_iter != other.roarings.cend()) {
auto self_key = self_iter->first;
auto other_key = other_iter->first;
if (self_key < other_key) {
// Because self_key is < other_key, advance self_iter to the
// first point where self_key >= other_key (or end).
self_iter = roarings.lower_bound(other_key);
continue;
}
if (self_key > other_key) {
// Because self_key is > other_key, advance other_iter to the
// first point where other_key >= self_key (or end).
other_iter = other.roarings.lower_bound(self_key);
continue;
}
// Both sides have self_key. In the logic table above, this reflects
// the case (self.present & other.present). So subtract other from
// self.
auto &self_bitmap = self_iter->second;
const auto &other_bitmap = other_iter->second;
self_bitmap -= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if subtraction is empty, remove it altogether.
self_iter = roarings.erase(self_iter);
} else {
++self_iter;
}
++other_iter;
}
return *this;
}
/**
* Compute the union of the current bitmap and the provided bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*
* See also the fastunion function to aggregate many bitmaps more quickly.
*/
Roaring64Map &operator|=(const Roaring64Map &other) {
if (this == &other) {
// ORing *this with itself is a no-op.
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self | other) work to do
// --------------------------------------------
// absent absent empty None
// absent present not empty Copy other to self and set flags
// present absent unchanged None
// present present not empty self |= other
//
// Because there is only work to do when a key is present in 'other',
// the main for loop iterates over entries in 'other'.
for (const auto &other_entry : other.roarings) {
const auto &other_bitmap = other_entry.second;
// Try to insert other_bitmap into self at other_key. We take
// advantage of the fact that std::map::insert will not overwrite an
// existing entry.
auto insert_result = roarings.insert(other_entry);
auto self_iter = insert_result.first;
auto insert_happened = insert_result.second;
auto &self_bitmap = self_iter->second;
if (insert_happened) {
// Key was not present in self, so insert was performed above.
// In the logic table above, this reflects the case
// (self.absent | other.present). Because the copy has already
// happened, thanks to the 'insert' operation above, we just
// need to set the copyOnWrite flag.
self_bitmap.setCopyOnWrite(copyOnWrite);
continue;
}
// Both sides have self_key, and the insert was not performed. In
// the logic table above, this reflects the case
// (self.present & other.present). So OR other into self.
self_bitmap |= other_bitmap;
}
return *this;
}
/**
* Compute the XOR of the current bitmap and the provided bitmap, writing
* the result in the current bitmap. The provided bitmap is not modified.
*/
Roaring64Map &operator^=(const Roaring64Map &other) {
if (this == &other) {
// XORing *this with itself results in the empty map.
roarings.clear();
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self ^ other) work to do
// --------------------------------------------
// absent absent empty None
// absent present non-empty Copy other to self and set flags
// present absent unchanged None
// present present empty or not XOR other into self, but erase self
// if result is empty.
//
// Because there is only work to do when a key is present in 'other',
// the main for loop iterates over entries in 'other'.
for (const auto &other_entry : other.roarings) {
const auto &other_bitmap = other_entry.second;
// Try to insert other_bitmap into self at other_key. We take
// advantage of the fact that std::map::insert will not overwrite an
// existing entry.
auto insert_result = roarings.insert(other_entry);
auto self_iter = insert_result.first;
auto insert_happened = insert_result.second;
auto &self_bitmap = self_iter->second;
if (insert_happened) {
// Key was not present in self, so insert was performed above.
// In the logic table above, this reflects the case
// (self.absent ^ other.present). Because the copy has already
// happened, thanks to the 'insert' operation above, we just
// need to set the copyOnWrite flag.
self_bitmap.setCopyOnWrite(copyOnWrite);
continue;
}
// Both sides have self_key, and the insert was not performed. In
// the logic table above, this reflects the case
// (self.present ^ other.present). So XOR other into self.
self_bitmap ^= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if intersection is empty, remove it altogether.
roarings.erase(self_iter);
}
}
return *this;
}
/**
* Exchange the content of this bitmap with another.
*/
void swap(Roaring64Map &r) { roarings.swap(r.roarings); }
/**
* Get the cardinality of the bitmap (number of elements).
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid
* exception.
*/
uint64_t cardinality() const {
if (isFull()) {
#if ROARING_EXCEPTIONS
throw std::length_error(
"bitmap is full, cardinality is 2^64, "
"unable to represent in a 64-bit integer");
#else
ROARING_TERMINATE(
"bitmap is full, cardinality is 2^64, "
"unable to represent in a 64-bit integer");
#endif
}
return std::accumulate(
roarings.cbegin(), roarings.cend(), (uint64_t)0,
[](uint64_t previous,
const std::pair<const uint32_t, Roaring> &map_entry) {
return previous + map_entry.second.cardinality();
});
}
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool isEmpty() const {
return std::all_of(
roarings.cbegin(), roarings.cend(),
[](const std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.isEmpty();
});
}
/**
* Returns true if the bitmap is full (cardinality is max uint64_t + 1).
*/
bool isFull() const {
// only bother to check if map is fully saturated
//
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return roarings.size() ==
((uint64_t)(std::numeric_limits<uint32_t>::max)()) + 1
? std::all_of(
roarings.cbegin(), roarings.cend(),
[](const std::pair<const uint32_t, Roaring>
&roaring_map_entry) {
// roarings within map are saturated if cardinality
// is uint32_t max + 1
return roaring_map_entry.second.cardinality() ==
((uint64_t)(std::numeric_limits<
uint32_t>::max)()) +
1;
})
: false;
}
/**
* Returns true if the bitmap is subset of the other.
*/
bool isSubset(const Roaring64Map &r) const {
for (const auto &map_entry : roarings) {
if (map_entry.second.isEmpty()) {
continue;
}
auto roaring_iter = r.roarings.find(map_entry.first);
if (roaring_iter == r.roarings.cend())
return false;
else if (!map_entry.second.isSubset(roaring_iter->second))
return false;
}
return true;
}
/**
* Returns true if the bitmap is strict subset of the other.
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid
* exception.
*/
bool isStrictSubset(const Roaring64Map &r) const {
return isSubset(r) && cardinality() != r.cardinality();
}
/**
* Convert the bitmap to an array. Write the output to "ans",
* caller is responsible to ensure that there is enough memory
* allocated
* (e.g., ans = new uint32[mybitmap.cardinality()];)
*/
void toUint64Array(uint64_t *ans) const {
// Annoyingly, VS 2017 marks std::accumulate() as [[nodiscard]]
(void)std::accumulate(
roarings.cbegin(), roarings.cend(), ans,
[](uint64_t *previous,
const std::pair<const uint32_t, Roaring> &map_entry) {
for (uint32_t low_bits : map_entry.second)
*previous++ = uniteBytes(map_entry.first, low_bits);
return previous;
});
}
/**
* Return true if the two bitmaps contain the same elements.
*/
bool operator==(const Roaring64Map &r) const {
// we cannot use operator == on the map because either side may contain
// empty Roaring Bitmaps
auto lhs_iter = roarings.cbegin();
auto lhs_cend = roarings.cend();
auto rhs_iter = r.roarings.cbegin();
auto rhs_cend = r.roarings.cend();
while (lhs_iter != lhs_cend && rhs_iter != rhs_cend) {
auto lhs_key = lhs_iter->first, rhs_key = rhs_iter->first;
const auto &lhs_map = lhs_iter->second, &rhs_map = rhs_iter->second;
if (lhs_map.isEmpty()) {
++lhs_iter;
continue;
}
if (rhs_map.isEmpty()) {
++rhs_iter;
continue;
}
if (!(lhs_key == rhs_key)) {
return false;
}
if (!(lhs_map == rhs_map)) {
return false;
}
++lhs_iter;
++rhs_iter;
}
while (lhs_iter != lhs_cend) {
if (!lhs_iter->second.isEmpty()) {
return false;
}
++lhs_iter;
}
while (rhs_iter != rhs_cend) {
if (!rhs_iter->second.isEmpty()) {
return false;
}
++rhs_iter;
}
return true;
}
/**
* Computes the negation of the roaring bitmap within the half-open interval
* [min, max). Areas outside the interval are unchanged.
*/
void flip(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
flipClosed(min, max - 1);
}
/**
* Computes the negation of the roaring bitmap within the closed interval
* [min, max]. Areas outside the interval are unchanged.
*/
void flipClosed(uint32_t min, uint32_t max) {
auto iter = roarings.begin();
// Since min and max are uint32_t, highbytes(min or max) == 0. The inner
// bitmap we are looking for, if it exists, will be at the first slot of
// 'roarings'. If it does not exist, we have to create it.
if (iter == roarings.end() || iter->first != 0) {
iter = roarings.emplace_hint(iter, std::piecewise_construct,
std::forward_as_tuple(0),
std::forward_as_tuple());
auto &bitmap = iter->second;
bitmap.setCopyOnWrite(copyOnWrite);
}
auto &bitmap = iter->second;
bitmap.flipClosed(min, max);
eraseIfEmpty(iter);
}
/**
* Computes the negation of the roaring bitmap within the closed interval
* [min, max]. Areas outside the interval are unchanged.
*/
void flipClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// Fill in any nonexistent slots with empty Roarings. This simplifies
// the logic below, allowing it to simply iterate over the map between
// 'start_high' and 'end_high' in a linear fashion.
auto current_iter = ensureRangePopulated(start_high, end_high);
// If start and end land on the same inner bitmap, then we can do the
// whole operation in one call.
if (start_high == end_high) {
auto &bitmap = current_iter->second;
bitmap.flipClosed(start_low, end_low);
eraseIfEmpty(current_iter);
return;
}
// Because start and end don't land on the same inner bitmap,
// we need to do this in multiple steps:
// 1. Partially flip the first bitmap in the closed interval
// [start_low, uint32_max]
// 2. Flip intermediate bitmaps completely: [0, uint32_max]
// 3. Partially flip the last bitmap in the closed interval
// [0, end_low]
auto num_intermediate_bitmaps = end_high - start_high - 1;
// 1. Partially flip the first bitmap.
{
auto &bitmap = current_iter->second;
bitmap.flipClosed(start_low, uint32_max);
auto temp = current_iter++;
eraseIfEmpty(temp);
}
// 2. Flip intermediate bitmaps completely.
for (uint32_t i = 0; i != num_intermediate_bitmaps; ++i) {
auto &bitmap = current_iter->second;
bitmap.flipClosed(0, uint32_max);
auto temp = current_iter++;
eraseIfEmpty(temp);
}
// 3. Partially flip the last bitmap.
auto &bitmap = current_iter->second;
bitmap.flipClosed(0, end_low);
eraseIfEmpty(current_iter);
}
/**
* Remove run-length encoding even when it is more space efficient
* return whether a change was applied
*/
bool removeRunCompression() {
return std::accumulate(
roarings.begin(), roarings.end(), true,
[](bool previous, std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.removeRunCompression() && previous;
});
}
/**
* Convert array and bitmap containers to run containers when it is more
* efficient; also convert from run containers when more space efficient.
* Returns true if the result has at least one run container.
* Additional savings might be possible by calling shrinkToFit().
*/
bool runOptimize() {
return std::accumulate(
roarings.begin(), roarings.end(), true,
[](bool previous, std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.runOptimize() && previous;
});
}
/**
* If needed, reallocate memory to shrink the memory usage.
* Returns the number of bytes saved.
*/
size_t shrinkToFit() {
size_t savedBytes = 0;
auto iter = roarings.begin();
while (iter != roarings.cend()) {
if (iter->second.isEmpty()) {
// empty Roarings are 84 bytes
savedBytes += 88;
roarings.erase(iter++);
} else {
savedBytes += iter->second.shrinkToFit();
iter++;
}
}
return savedBytes;
}
/**
* Iterate over the bitmap elements in order(start from the smallest one)
* and call iterator once for every element until the iterator function
* returns false. To iterate over all values, the iterator function should
* always return true.
*
* The roaring_iterator64 parameter is a pointer to a function that
* returns bool (true means that the iteration should continue while false
* means that it should stop), and takes (uint64_t element, void* ptr) as
* inputs.
*/
void iterate(api::roaring_iterator64 iterator, void *ptr) const {
for (const auto &map_entry : roarings) {
bool should_continue =
roaring_iterate64(&map_entry.second.roaring, iterator,
uint64_t(map_entry.first) << 32, ptr);
if (!should_continue) {
break;
}
}
}
/**
* Selects the value at index 'rank' in the bitmap, where the smallest value
* is at index 0. If 'rank' < cardinality(), returns true with *element set
* to the element of the specified rank. Otherwise, returns false and the
* contents of *element are unspecified.
*/
bool select(uint64_t rank, uint64_t *element) const {
for (const auto &map_entry : roarings) {
auto key = map_entry.first;
const auto &bitmap = map_entry.second;
uint64_t sub_cardinality = bitmap.cardinality();
if (rank < sub_cardinality) {
uint32_t low_bytes;
// Casting rank to uint32_t is safe because
// rank < sub_cardinality and sub_cardinality <= 2^32.
if (!bitmap.select((uint32_t)rank, &low_bytes)) {
ROARING_TERMINATE(
"Logic error: bitmap.select() "
"returned false despite rank < cardinality()");
}
*element = uniteBytes(key, low_bytes);
return true;
}
rank -= sub_cardinality;
}
return false;
}
/**
* Returns the number of integers that are smaller or equal to x.
*/
uint64_t rank(uint64_t x) const {
uint64_t result = 0;
// Find the first bitmap >= x's bucket. If that is the bucket x would be
// in, find it's rank in that bucket. Either way, we're left with a
// range of all buckets strictly smaller than x's bucket, add all their
// cardinalities together.
auto end = roarings.lower_bound(highBytes(x));
if (end != roarings.cend() && end->first == highBytes(x)) {
result += end->second.rank(lowBytes(x));
}
for (auto iter = roarings.cbegin(); iter != end; ++iter) {
result += iter->second.cardinality();
}
return result;
}
/**
* Returns the index of x in the set, index start from 0.
* If the set doesn't contain x , this function will return -1.
* The difference with rank function is that this function will return -1
* when x isn't in the set, but the rank function will return a
* non-negative number.
*/
int64_t getIndex(uint64_t x) const {
int64_t index = 0;
auto roaring_destination = roarings.find(highBytes(x));
if (roaring_destination != roarings.cend()) {
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roaring_destination; ++roaring_iter) {
index += roaring_iter->second.cardinality();
}
auto low_idx = roaring_destination->second.getIndex(lowBytes(x));
if (low_idx < 0) return -1;
index += low_idx;
return index;
}
return -1;
}
/**
* Write a bitmap to a char buffer. This is meant to be compatible with
* the Java and Go versions. Returns how many bytes were written which
* should be getSizeInBytes().
*
* Setting the portable flag to false enables a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*/
size_t write(char *buf, bool portable = true) const {
const char *orig = buf;
// push map size
uint64_t map_size = roarings.size();
std::memcpy(buf, &map_size, sizeof(uint64_t));
buf += sizeof(uint64_t);
std::for_each(roarings.cbegin(), roarings.cend(),
[&buf, portable](
const std::pair<const uint32_t, Roaring> &map_entry) {
// push map key
std::memcpy(buf, &map_entry.first, sizeof(uint32_t));
// ^-- Note: `*((uint32_t*)buf) = map_entry.first;` is
// undefined
buf += sizeof(uint32_t);
// push map value Roaring
buf += map_entry.second.write(buf, portable);
});
return buf - orig;
}
/**
* Read a bitmap from a serialized version. This is meant to be compatible
* with the Java and Go versions.
*
* Setting the portable flag to false enable a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*
* This function is unsafe in the sense that if you provide bad data, many
* bytes could be read, possibly causing a buffer overflow. See also
* readSafe.
*/
static Roaring64Map read(const char *buf, bool portable = true) {
Roaring64Map result;
// get map size
uint64_t map_size;
std::memcpy(&map_size, buf, sizeof(uint64_t));
buf += sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
// get map key
uint32_t key;
std::memcpy(&key, buf, sizeof(uint32_t));
// ^-- Note: `uint32_t key = *((uint32_t*)buf);` is undefined
buf += sizeof(uint32_t);
// read map value Roaring
Roaring read_var = Roaring::read(buf, portable);
// forward buffer past the last Roaring Bitmap
buf += read_var.getSizeInBytes(portable);
result.emplaceOrInsert(key, std::move(read_var));
}
return result;
}
/**
* Read a bitmap from a serialized version, reading no more than maxbytes
* bytes. This is meant to be compatible with the Java and Go versions.
*
* Setting the portable flag to false enable a custom format that can save
* space compared to the portable format (e.g., for very sparse bitmaps).
*/
static Roaring64Map readSafe(const char *buf, size_t maxbytes) {
if (maxbytes < sizeof(uint64_t)) {
ROARING_TERMINATE("ran out of bytes");
}
Roaring64Map result;
uint64_t map_size;
std::memcpy(&map_size, buf, sizeof(uint64_t));
buf += sizeof(uint64_t);
maxbytes -= sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
if (maxbytes < sizeof(uint32_t)) {
ROARING_TERMINATE("ran out of bytes");
}
uint32_t key;
std::memcpy(&key, buf, sizeof(uint32_t));
// ^-- Note: `uint32_t key = *((uint32_t*)buf);` is undefined
buf += sizeof(uint32_t);
maxbytes -= sizeof(uint32_t);
// read map value Roaring
Roaring read_var = Roaring::readSafe(buf, maxbytes);
// forward buffer past the last Roaring Bitmap
size_t tz = read_var.getSizeInBytes(true);
buf += tz;
maxbytes -= tz;
result.emplaceOrInsert(key, std::move(read_var));
}
return result;
}
/**
* Return the number of bytes required to serialize this bitmap (meant to
* be compatible with Java and Go versions)
*
* Setting the portable flag to false enable a custom format that can save
* space compared to the portable format (e.g., for very sparse bitmaps).
*/
size_t getSizeInBytes(bool portable = true) const {
// start with, respectively, map size and size of keys for each map
// entry
return std::accumulate(
roarings.cbegin(), roarings.cend(),
sizeof(uint64_t) + roarings.size() * sizeof(uint32_t),
[=](size_t previous,
const std::pair<const uint32_t, Roaring> &map_entry) {
// add in bytes used by each Roaring
return previous + map_entry.second.getSizeInBytes(portable);
});
}
static const Roaring64Map frozenView(const char *buf) {
// size of bitmap buffer and key
const size_t metadata_size = sizeof(size_t) + sizeof(uint32_t);
Roaring64Map result;
// get map size
uint64_t map_size;
memcpy(&map_size, buf, sizeof(uint64_t));
buf += sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
// pad to 32 bytes minus the metadata size
while (((uintptr_t)buf + metadata_size) % 32 != 0) buf++;
// get bitmap size
size_t len;
memcpy(&len, buf, sizeof(size_t));
buf += sizeof(size_t);
// get map key
uint32_t key;
memcpy(&key, buf, sizeof(uint32_t));
buf += sizeof(uint32_t);
// read map value Roaring
const Roaring read = Roaring::frozenView(buf, len);
result.emplaceOrInsert(key, read);
// forward buffer past the last Roaring Bitmap
buf += len;
}
return result;
}
static const Roaring64Map portableDeserializeFrozen(const char *buf) {
Roaring64Map result;
// get map size
uint64_t map_size;
std::memcpy(&map_size, buf, sizeof(uint64_t));
buf += sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
// get map key
uint32_t key;
std::memcpy(&key, buf, sizeof(uint32_t));
buf += sizeof(uint32_t);
// read map value Roaring
Roaring read_var = Roaring::portableDeserializeFrozen(buf);
// forward buffer past the last Roaring bitmap
buf += read_var.getSizeInBytes(true);
result.emplaceOrInsert(key, std::move(read_var));
}
return result;
}
// As with serialized 64-bit bitmaps, 64-bit frozen bitmaps are serialized
// by concatenating one or more Roaring::write output buffers with the
// preceeding map key. Unlike standard bitmap serialization, frozen bitmaps
// must be 32-byte aligned and requires a buffer length to parse. As a
// result, each concatenated output of Roaring::writeFrozen is preceeded by
// padding, the buffer size (size_t), and the map key (uint32_t). The
// padding is used to ensure 32-byte alignment, but since it is followed by
// the buffer size and map key, it actually pads to `(x - sizeof(size_t) +
// sizeof(uint32_t)) mod 32` to leave room for the metadata.
void writeFrozen(char *buf) const {
// size of bitmap buffer and key
const size_t metadata_size = sizeof(size_t) + sizeof(uint32_t);
// push map size
uint64_t map_size = roarings.size();
memcpy(buf, &map_size, sizeof(uint64_t));
buf += sizeof(uint64_t);
for (auto &map_entry : roarings) {
size_t frozenSizeInBytes = map_entry.second.getFrozenSizeInBytes();
// pad to 32 bytes minus the metadata size
while (((uintptr_t)buf + metadata_size) % 32 != 0) buf++;
// push bitmap size
memcpy(buf, &frozenSizeInBytes, sizeof(size_t));
buf += sizeof(size_t);
// push map key
memcpy(buf, &map_entry.first, sizeof(uint32_t));
buf += sizeof(uint32_t);
// push map value Roaring
map_entry.second.writeFrozen(buf);
buf += map_entry.second.getFrozenSizeInBytes();
}
}
size_t getFrozenSizeInBytes() const {
// size of bitmap size and map key
const size_t metadata_size = sizeof(size_t) + sizeof(uint32_t);
size_t ret = 0;
// map size
ret += sizeof(uint64_t);
for (auto &map_entry : roarings) {
// pad to 32 bytes minus the metadata size
while ((ret + metadata_size) % 32 != 0) ret++;
ret += metadata_size;
// frozen bitmaps must be 32-byte aligned
ret += map_entry.second.getFrozenSizeInBytes();
}
return ret;
}
/**
* Computes the intersection between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmap.
* Consider also using the operator &= to avoid needlessly creating
* many temporary bitmaps.
*/
Roaring64Map operator&(const Roaring64Map &o) const {
return Roaring64Map(*this) &= o;
}
/**
* Computes the difference between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator-(const Roaring64Map &o) const {
return Roaring64Map(*this) -= o;
}
/**
* Computes the union between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator|(const Roaring64Map &o) const {
return Roaring64Map(*this) |= o;
}
/**
* Computes the symmetric union between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator^(const Roaring64Map &o) const {
return Roaring64Map(*this) ^= o;
}
/**
* Whether or not we apply copy and write.
*/
void setCopyOnWrite(bool val) {
if (copyOnWrite == val) return;
copyOnWrite = val;
std::for_each(roarings.begin(), roarings.end(),
[=](std::pair<const uint32_t, Roaring> &map_entry) {
map_entry.second.setCopyOnWrite(val);
});
}
/**
* Print the contents of the bitmap to stdout.
* Note: this method adds a final newline, but toString() does not.
*/
void printf() const {
auto sink = [](const std::string &s) { fputs(s.c_str(), stdout); };
printToSink(sink);
sink("\n");
}
/**
* Print the contents of the bitmap into a string.
*/
std::string toString() const {
std::string result;
auto sink = [&result](const std::string &s) { result += s; };
printToSink(sink);
return result;
}
/**
* Whether or not copy and write is active.
*/
bool getCopyOnWrite() const { return copyOnWrite; }
/**
* Computes the logical or (union) between "n" bitmaps (referenced by a
* pointer).
*/
static Roaring64Map fastunion(size_t n, const Roaring64Map **inputs) {
// The strategy here is to basically do a "group by" operation.
// We group the input roarings by key, do a 32-bit
// roaring_bitmap_or_many on each group, and collect the results.
// We accomplish the "group by" operation using a priority queue, which
// tracks the next key for each of our input maps. At each step, our
// algorithm takes the next subset of maps that share the same next key,
// runs roaring_bitmap_or_many on those bitmaps, and then advances the
// current_iter on all the affected entries and then repeats.
// There is an entry in our priority queue for each of the 'n' inputs.
// For a given Roaring64Map, we look at its underlying 'roarings'
// std::map, and take its begin() and end(). This forms our half-open
// interval [current_iter, end_iter), which we keep in the priority
// queue as a pq_entry. These entries are updated (removed and then
// reinserted with the pq_entry.iterator field advanced by one step) as
// our algorithm progresses. But when a given interval becomes empty
// (i.e. pq_entry.iterator == pq_entry.end) it is not returned to the
// priority queue.
struct pq_entry {
roarings_t::const_iterator iterator;
roarings_t::const_iterator end;
};
// Custom comparator for the priority queue.
auto pq_comp = [](const pq_entry &lhs, const pq_entry &rhs) {
auto left_key = lhs.iterator->first;
auto right_key = rhs.iterator->first;
// We compare in the opposite direction than normal because priority
// queues normally order from largest to smallest, but we want
// smallest to largest.
return left_key > right_key;
};
// Create and populate the priority queue.
std::priority_queue<pq_entry, std::vector<pq_entry>, decltype(pq_comp)>
pq(pq_comp);
for (size_t i = 0; i < n; ++i) {
const auto &roarings = inputs[i]->roarings;
if (roarings.begin() != roarings.end()) {
pq.push({roarings.begin(), roarings.end()});
}
}
// A reusable vector that holds the pointers to the inner bitmaps that
// we pass to the underlying 32-bit fastunion operation.
std::vector<const roaring_bitmap_t *> group_bitmaps;
// Summary of the algorithm:
// 1. While the priority queue is not empty:
// A. Get its lowest key. Call this group_key
// B. While the lowest entry in the priority queue has a key equal to
// group_key:
// 1. Remove this entry (the pair {current_iter, end_iter}) from
// the priority queue.
// 2. Add the bitmap pointed to by current_iter to a list of
// 32-bit bitmaps to process.
// 3. Advance current_iter. Now it will point to a bitmap entry
// with some key greater than group_key (or it will point to
// end()).
// 4. If current_iter != end_iter, reinsert the pair into the
// priority queue.
// C. Invoke the 32-bit roaring_bitmap_or_many() and add to result
Roaring64Map result;
while (!pq.empty()) {
// Find the next key (the lowest key) in the priority queue.
auto group_key = pq.top().iterator->first;
// The purpose of the inner loop is to gather all the inner bitmaps
// that share "group_key" into "group_bitmaps" so that they can be
// fed to roaring_bitmap_or_many(). While we are doing this, we
// advance those iterators to their next value and reinsert them
// into the priority queue (unless they reach their end).
group_bitmaps.clear();
while (!pq.empty()) {
auto candidate_current_iter = pq.top().iterator;
auto candidate_end_iter = pq.top().end;
auto candidate_key = candidate_current_iter->first;
const auto &candidate_bitmap = candidate_current_iter->second;
// This element will either be in the group (having
// key == group_key) or it will not be in the group (having
// key > group_key). (Note it cannot have key < group_key
// because of the ordered nature of the priority queue itself
// and the ordered nature of all the underlying roaring maps).
if (candidate_key != group_key) {
// This entry, and (thanks to the nature of the priority
// queue) all other entries as well, are all greater than
// group_key, so we're done collecting elements for the
// current group. Because of the way this loop was written,
// the group will will always contain at least one element.
break;
}
group_bitmaps.push_back(&candidate_bitmap.roaring);
// Remove this entry from the priority queue. Note this
// invalidates pq.top() so make sure you don't have any dangling
// references to it.
pq.pop();
// Advance 'candidate_current_iter' and insert a new entry
// {candidate_current_iter, candidate_end_iter} into the
// priority queue (unless it has reached its end).
++candidate_current_iter;
if (candidate_current_iter != candidate_end_iter) {
pq.push({candidate_current_iter, candidate_end_iter});
}
}
// Use the fast inner union to combine these.
auto *inner_result = roaring_bitmap_or_many(group_bitmaps.size(),
group_bitmaps.data());
// Insert the 32-bit result at end of the 'roarings' map of the
// result we are building.
result.roarings.insert(
result.roarings.end(),
std::make_pair(group_key, Roaring(inner_result)));
}
return result;
}
friend class Roaring64MapSetBitBiDirectionalIterator;
typedef Roaring64MapSetBitBiDirectionalIterator const_iterator;
typedef Roaring64MapSetBitBiDirectionalIterator
const_bidirectional_iterator;
/**
* Returns an iterator that can be used to access the position of the set
* bits. The running time complexity of a full scan is proportional to the
* number of set bits: be aware that if you have long strings of 1s, this
* can be very inefficient.
*
* It can be much faster to use the toArray method if you want to
* retrieve the set bits.
*/
const_iterator begin() const;
/**
* A bogus iterator that can be used together with begin()
* for constructions such as: for (auto i = b.begin(); * i!=b.end(); ++i) {}
*/
const_iterator end() const;
private:
typedef std::map<uint32_t, Roaring> roarings_t;
roarings_t roarings{}; // The empty constructor silences warnings from
// pedantic static analyzers.
bool copyOnWrite{false};
static constexpr uint32_t highBytes(const uint64_t in) {
return uint32_t(in >> 32);
}
static constexpr uint32_t lowBytes(const uint64_t in) {
return uint32_t(in);
}
static constexpr uint64_t uniteBytes(const uint32_t highBytes,
const uint32_t lowBytes) {
return (uint64_t(highBytes) << 32) | uint64_t(lowBytes);
}
// this is needed to tolerate gcc's C++11 libstdc++ lacking emplace
// prior to version 4.8
void emplaceOrInsert(const uint32_t key, const Roaring &value) {
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20130322
roarings.insert(std::make_pair(key, value));
#else
roarings.emplace(std::make_pair(key, value));
#endif
}
void emplaceOrInsert(const uint32_t key, Roaring &&value) {
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20130322
roarings.insert(std::make_pair(key, std::move(value)));
#else
roarings.emplace(key, std::move(value));
#endif
}
/*
* Look up 'key' in the 'roarings' map. If it does not exist, create it.
* Also, set its copyOnWrite flag to 'copyOnWrite'. Then return a reference
* to the (already existing or newly created) inner bitmap.
*/
Roaring &lookupOrCreateInner(uint32_t key) {
auto &bitmap = roarings[key];
bitmap.setCopyOnWrite(copyOnWrite);
return bitmap;
}
/**
* Prints the contents of the bitmap to a caller-provided sink function.
*/
void printToSink(
const std::function<void(const std::string &)> &sink) const {
sink("{");
// Storage for snprintf. Big enough to store the decimal representation
// of the largest uint64_t value and trailing \0.
char buffer[32];
const char *separator = "";
// Reusable, and therefore avoids many repeated heap allocations.
std::string callback_string;
for (const auto &entry : roarings) {
auto high_bits = entry.first;
const auto &bitmap = entry.second;
for (const auto low_bits : bitmap) {
auto value = uniteBytes(high_bits, low_bits);
snprintf(buffer, sizeof(buffer), "%" PRIu64, value);
callback_string = separator;
callback_string.append(buffer);
sink(callback_string);
separator = ",";
}
}
sink("}");
}
/**
* Ensures that every key in the closed interval [start_high, end_high]
* refers to a Roaring bitmap rather being an empty slot. Inserts empty
* Roaring bitmaps if necessary. The interval must be valid and non-empty.
* Returns an iterator to the bitmap at start_high.
*/
roarings_t::iterator ensureRangePopulated(uint32_t start_high,
uint32_t end_high) {
if (start_high > end_high) {
ROARING_TERMINATE("Logic error: start_high > end_high");
}
// next_populated_iter points to the first entry in the outer map with
// key >= start_high, or end().
auto next_populated_iter = roarings.lower_bound(start_high);
// Use uint64_t to avoid an infinite loop when end_high == uint32_max.
roarings_t::iterator start_iter{}; // Definitely assigned in loop.
for (uint64_t slot = start_high; slot <= end_high; ++slot) {
roarings_t::iterator slot_iter;
if (next_populated_iter != roarings.end() &&
next_populated_iter->first == slot) {
// 'slot' index has caught up to next_populated_iter.
// Note it here and advance next_populated_iter.
slot_iter = next_populated_iter++;
} else {
// 'slot' index has not yet caught up to next_populated_iter.
// Make a fresh entry {key = 'slot', value = Roaring()}, insert
// it just prior to next_populated_iter, and set its copy
// on write flag. We take pains to use emplace_hint and
// piecewise_construct to minimize effort.
slot_iter = roarings.emplace_hint(
next_populated_iter, std::piecewise_construct,
std::forward_as_tuple(uint32_t(slot)),
std::forward_as_tuple());
auto &bitmap = slot_iter->second;
bitmap.setCopyOnWrite(copyOnWrite);
}
// Make a note of the iterator of the starting slot. It will be
// needed for the return value.
if (slot == start_high) {
start_iter = slot_iter;
}
}
return start_iter;
}
/**
* Erases the entry pointed to by 'iter' from the 'roarings' map. Warning:
* this invalidates 'iter'.
*/
void eraseIfEmpty(roarings_t::iterator iter) {
const auto &bitmap = iter->second;
if (bitmap.isEmpty()) {
roarings.erase(iter);
}
}
};
/**
* Used to go through the set bits. Not optimally fast, but convenient.
*/
class Roaring64MapSetBitBiDirectionalIterator {
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef uint64_t *pointer;
typedef uint64_t &reference;
typedef uint64_t value_type;
typedef int64_t difference_type;
typedef Roaring64MapSetBitBiDirectionalIterator type_of_iterator;
Roaring64MapSetBitBiDirectionalIterator(const Roaring64Map &parent,
bool exhausted = false)
: p(&parent.roarings) {
if (exhausted || parent.roarings.empty()) {
map_iter = p->cend();
} else {
map_iter = parent.roarings.cbegin();
roaring_iterator_init(&map_iter->second.roaring, &i);
while (!i.has_value) {
map_iter++;
if (map_iter == p->cend()) return;
roaring_iterator_init(&map_iter->second.roaring, &i);
}
}
}
/**
* Provides the location of the set bit.
*/
value_type operator*() const {
return Roaring64Map::uniteBytes(map_iter->first, i.current_value);
}
bool operator<(const type_of_iterator &o) const {
if (map_iter == p->cend()) return false;
if (o.map_iter == o.p->cend()) return true;
return **this < *o;
}
bool operator<=(const type_of_iterator &o) const {
if (o.map_iter == o.p->cend()) return true;
if (map_iter == p->cend()) return false;
return **this <= *o;
}
bool operator>(const type_of_iterator &o) const {
if (o.map_iter == o.p->cend()) return false;
if (map_iter == p->cend()) return true;
return **this > *o;
}
bool operator>=(const type_of_iterator &o) const {
if (map_iter == p->cend()) return true;
if (o.map_iter == o.p->cend()) return false;
return **this >= *o;
}
type_of_iterator &operator++() { // ++i, must returned inc. value
if (i.has_value == true) roaring_uint32_iterator_advance(&i);
while (!i.has_value) {
++map_iter;
if (map_iter == p->cend()) return *this;
roaring_iterator_init(&map_iter->second.roaring, &i);
}
return *this;
}
type_of_iterator operator++(int) { // i++, must return orig. value
Roaring64MapSetBitBiDirectionalIterator orig(*this);
roaring_uint32_iterator_advance(&i);
while (!i.has_value) {
++map_iter;
if (map_iter == p->cend()) return orig;
roaring_iterator_init(&map_iter->second.roaring, &i);
}
return orig;
}
bool move(const value_type &x) {
map_iter = p->lower_bound(Roaring64Map::highBytes(x));
if (map_iter != p->cend()) {
roaring_iterator_init(&map_iter->second.roaring, &i);
if (map_iter->first == Roaring64Map::highBytes(x)) {
if (roaring_uint32_iterator_move_equalorlarger(
&i, Roaring64Map::lowBytes(x)))
return true;
++map_iter;
if (map_iter == p->cend()) return false;
roaring_iterator_init(&map_iter->second.roaring, &i);
}
return true;
}
return false;
}
type_of_iterator &operator--() { // --i, must return dec.value
if (map_iter == p->cend()) {
--map_iter;
roaring_iterator_init_last(&map_iter->second.roaring, &i);
if (i.has_value) return *this;
}
roaring_uint32_iterator_previous(&i);
while (!i.has_value) {
if (map_iter == p->cbegin()) return *this;
map_iter--;
roaring_iterator_init_last(&map_iter->second.roaring, &i);
}
return *this;
}
type_of_iterator operator--(int) { // i--, must return orig. value
Roaring64MapSetBitBiDirectionalIterator orig(*this);
if (map_iter == p->cend()) {
--map_iter;
roaring_iterator_init_last(&map_iter->second.roaring, &i);
return orig;
}
roaring_uint32_iterator_previous(&i);
while (!i.has_value) {
if (map_iter == p->cbegin()) return orig;
map_iter--;
roaring_iterator_init_last(&map_iter->second.roaring, &i);
}
return orig;
}
bool operator==(const Roaring64MapSetBitBiDirectionalIterator &o) const {
if (map_iter == p->cend() && o.map_iter == o.p->cend()) return true;
if (o.map_iter == o.p->cend()) return false;
return **this == *o;
}
bool operator!=(const Roaring64MapSetBitBiDirectionalIterator &o) const {
if (map_iter == p->cend() && o.map_iter == o.p->cend()) return false;
if (o.map_iter == o.p->cend()) return true;
return **this != *o;
}
private:
const std::map<uint32_t, Roaring> *p{nullptr};
std::map<uint32_t, Roaring>::const_iterator
map_iter{}; // The empty constructor silences warnings from pedantic
// static analyzers.
api::roaring_uint32_iterator_t
i{}; // The empty constructor silences warnings from pedantic static
// analyzers.
};
inline Roaring64MapSetBitBiDirectionalIterator Roaring64Map::begin() const {
return Roaring64MapSetBitBiDirectionalIterator(*this);
}
inline Roaring64MapSetBitBiDirectionalIterator Roaring64Map::end() const {
return Roaring64MapSetBitBiDirectionalIterator(*this, true);
}
} // namespace roaring
#endif /* INCLUDE_ROARING_64_MAP_HH_ */
|