aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/croaring/cpp/roaring.hh
blob: f14150baf5c2d5a441ccda2d365c31d1872749b5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*
A C++ header for Roaring Bitmaps.
*/
#ifndef INCLUDE_ROARING_HH_
#define INCLUDE_ROARING_HH_

#include <cstdarg>

#include <algorithm>
#include <initializer_list>
#include <new>
#include <stdexcept>
#include <string>

#if !defined(ROARING_EXCEPTIONS)
// __cpp_exceptions is required by C++98 and we require C++11 or better.
#ifndef __cpp_exceptions
#error "__cpp_exceptions should be defined"
#endif
# if __cpp_exceptions
#  define ROARING_EXCEPTIONS 1
# else
#  define ROARING_EXCEPTIONS 0
# endif
#endif

#ifndef ROARING_TERMINATE
# if ROARING_EXCEPTIONS
#  define ROARING_TERMINATE(_s) throw std::runtime_error(_s)
# else
#  define ROARING_TERMINATE(_s) std::terminate()
# endif
#endif

#define ROARING_API_NOT_IN_GLOBAL_NAMESPACE  // see remarks in roaring.h
#include <roaring/roaring.h>
#undef ROARING_API_NOT_IN_GLOBAL_NAMESPACE

#include <roaring/roaring_array.h>  // roaring::internal array functions used

namespace roaring {

class RoaringSetBitForwardIterator;

/**
 * A bit of context usable with `*Bulk()` functions.
 *
 * A context may only be used with a single bitmap, and any modification to a bitmap
 * (other than modifications performed with `Bulk()` functions with the context
 * passed) will invalidate any contexts associated with that bitmap.
 */
class BulkContext {
   public:
    friend class Roaring;
    using roaring_bitmap_bulk_context_t = api::roaring_bulk_context_t;
    BulkContext() : context_{nullptr, 0, 0, 0} {}

    BulkContext(const BulkContext&) = delete;
    BulkContext& operator=(const BulkContext&) = delete;
    BulkContext(BulkContext&&) noexcept = default;
    BulkContext& operator=(BulkContext&&) noexcept = default;

   private:
    roaring_bitmap_bulk_context_t context_;
};

class Roaring {
    typedef api::roaring_bitmap_t roaring_bitmap_t;  // class-local name alias

public:
    /**
     * Create an empty bitmap in the existing memory for the class.
     * The bitmap will be in the "clear" state with no auxiliary allocations.
     */
    Roaring() : roaring{} {
        // The empty constructor roaring{} silences warnings from pedantic static analyzers.
        api::roaring_bitmap_init_cleared(&roaring);
    }

    /**
     * Construct a bitmap from a list of 32-bit integer values.
     */
    Roaring(size_t n, const uint32_t *data) : Roaring() {
        api::roaring_bitmap_add_many(&roaring, n, data);
    }

    /**
     * Construct a bitmap from an initializer list.
     */
    Roaring(std::initializer_list<uint32_t> l) : Roaring() {
        addMany(l.size(), l.begin());
    }

    /**
     * Copy constructor.
     * It may throw std::runtime_error if there is insufficient memory.
     */
    Roaring(const Roaring &r) : Roaring() {
        if (!api::roaring_bitmap_overwrite(&roaring, &r.roaring)) {
            ROARING_TERMINATE("failed roaring_bitmap_overwrite in constructor");
        }
        api::roaring_bitmap_set_copy_on_write(
            &roaring,
            api::roaring_bitmap_get_copy_on_write(&r.roaring));
    }

    /**
     * Move constructor. The moved-from object remains valid but empty, i.e.
     * it behaves as though it was just freshly constructed.
     */
    Roaring(Roaring &&r) noexcept : roaring(r.roaring) {
        //
        // !!! This clones the bits of the roaring structure to a new location
        // and then overwrites the old bits...assuming that this will still
        // work.  There are scenarios where this could break; e.g. if some of
        // those bits were pointers into the structure memory itself.  If such
        // things were possible, a roaring_bitmap_move() API would be needed.
        //
        api::roaring_bitmap_init_cleared(&r.roaring);
    }

    /**
     * Construct a roaring object by taking control of a malloc()'d C struct.
     *
     * Passing a NULL pointer is unsafe.
     * The pointer to the C struct will be invalid after the call.
     */
    explicit Roaring(roaring_bitmap_t *s) noexcept : roaring (*s) {
        roaring_free(s);  // deallocate the passed-in pointer
    }

    /**
     * Construct a bitmap from a list of uint32_t values.
     */
    static Roaring bitmapOf(size_t n, ...) {
        Roaring ans;
        va_list vl;
        va_start(vl, n);
        for (size_t i = 0; i < n; i++) {
            ans.add(va_arg(vl, uint32_t));
        }
        va_end(vl);
        return ans;
    }

    /**
     * Construct a bitmap from a list of uint32_t values.
     * E.g., bitmapOfList({1,2,3}).
     */
    static Roaring bitmapOfList(std::initializer_list<uint32_t> l) {
        Roaring ans;
        ans.addMany(l.size(), l.begin());
        return ans;
    }

    /**
     * Add value x
     */
    void add(uint32_t x) noexcept { api::roaring_bitmap_add(&roaring, x); }

    /**
     * Add value x
     * Returns true if a new value was added, false if the value was already
     * existing.
     */
    bool addChecked(uint32_t x) noexcept {
        return api::roaring_bitmap_add_checked(&roaring, x);
    }

    /**
     * Add all values in range [min, max)
     */
    void addRange(const uint64_t min, const uint64_t max) noexcept {
        return api::roaring_bitmap_add_range(&roaring, min, max);
    }

    /**
     * Add all values in range [min, max]
     */
    void addRangeClosed(const uint32_t min, const uint32_t max) noexcept {
        return api::roaring_bitmap_add_range_closed(&roaring, min, max);
    }

    /**
     * Add value n_args from pointer vals
     */
    void addMany(size_t n_args, const uint32_t *vals) noexcept {
        api::roaring_bitmap_add_many(&roaring, n_args, vals);
    }

    /**
     * Add value val, using context from a previous insert for speed
     * optimization.
     *
     * `context` will be used to store information between calls to make bulk
     * operations faster. `context` should be default-initialized before the
     * first call to this function.
     */
    void addBulk(BulkContext &context, uint32_t x) noexcept {
        api::roaring_bitmap_add_bulk(&roaring, &context.context_, x);
    }

    /**
     * Check if item x is present, using context from a previous insert or search
     * for speed optimization.
     *
     * `context` will be used to store information between calls to make bulk
     * operations faster. `context` should be default-initialized before the
     * first call to this function.
     */
    bool containsBulk(BulkContext& context, uint32_t x) const noexcept {
        return api::roaring_bitmap_contains_bulk(&roaring, &context.context_, x);
    }

    /**
     * Remove value x
     */
    void remove(uint32_t x) noexcept { api::roaring_bitmap_remove(&roaring, x); }

    /**
     * Remove value x
     * Returns true if a new value was removed, false if the value was not
     * existing.
     */
    bool removeChecked(uint32_t x) noexcept {
        return api::roaring_bitmap_remove_checked(&roaring, x);
    }

    /**
     * Remove all values in range [min, max)
     */
    void removeRange(uint64_t min, uint64_t max) noexcept {
        return api::roaring_bitmap_remove_range(&roaring, min, max);
    }

    /**
     * Remove all values in range [min, max]
     */
    void removeRangeClosed(uint32_t min, uint32_t max) noexcept {
        return api::roaring_bitmap_remove_range_closed(&roaring, min, max);
    }

    /**
     * Return the largest value (if not empty)
     */
    uint32_t maximum() const noexcept { return api::roaring_bitmap_maximum(&roaring); }

    /**
     * Return the smallest value (if not empty)
     */
    uint32_t minimum() const noexcept { return api::roaring_bitmap_minimum(&roaring); }

    /**
     * Check if value x is present
     */
    bool contains(uint32_t x) const noexcept {
        return api::roaring_bitmap_contains(&roaring, x);
    }

    /**
     * Check if all values from x (included) to y (excluded) are present
     */
    bool containsRange(const uint64_t x, const uint64_t y) const noexcept {
        return api::roaring_bitmap_contains_range(&roaring, x, y);
    }

    /**
     * Destructor.  By contract, calling roaring_bitmap_clear() is enough to
     * release all auxiliary memory used by the structure.
     */
    ~Roaring() {
        if (!(roaring.high_low_container.flags & ROARING_FLAG_FROZEN)) {
            api::roaring_bitmap_clear(&roaring);
        } else {
            // The roaring member variable copies the `roaring_bitmap_t` and
            // nested `roaring_array_t` structures by value and is freed in the
            // constructor, however the underlying memory arena used for the
            // container data is not freed with it. Here we derive the arena
            // pointer from the second arena allocation in
            // `roaring_bitmap_frozen_view` and free it as well.
            roaring_bitmap_free(
                (roaring_bitmap_t *)((char *)
                                     roaring.high_low_container.containers -
                                     sizeof(roaring_bitmap_t)));
        }
    }

    /**
     * Copies the content of the provided bitmap, and
     * discard the current content.
     * It may throw std::runtime_error if there is insufficient memory.
     */
    Roaring &operator=(const Roaring &r) {
        if (!api::roaring_bitmap_overwrite(&roaring, &r.roaring)) {
            ROARING_TERMINATE("failed memory alloc in assignment");
        }
        api::roaring_bitmap_set_copy_on_write(
            &roaring,
            api::roaring_bitmap_get_copy_on_write(&r.roaring));
        return *this;
    }

    /**
     * Moves the content of the provided bitmap, and
     * discard the current content.
     */
    Roaring &operator=(Roaring &&r) noexcept {
        api::roaring_bitmap_clear(&roaring);  // free this class's allocations

        // !!! See notes in the Move Constructor regarding roaring_bitmap_move()
        //
        roaring = r.roaring;
        api::roaring_bitmap_init_cleared(&r.roaring);

        return *this;
    }

    /**
     * Assignment from an initializer list.
     */
    Roaring &operator=(std::initializer_list<uint32_t> l) {
        // Delegate to move assignment operator
        *this = Roaring(l);
        return *this;
    }

    /**
     * Compute the intersection between the current bitmap and the provided
     * bitmap, writing the result in the current bitmap. The provided bitmap
     * is not modified.
     *
     * Performance hint: if you are computing the intersection between several
     * bitmaps, two-by-two, it is best to start with the smallest bitmap.
     */
    Roaring &operator&=(const Roaring &r) noexcept {
        api::roaring_bitmap_and_inplace(&roaring, &r.roaring);
        return *this;
    }

    /**
     * Compute the difference between the current bitmap and the provided
     * bitmap, writing the result in the current bitmap. The provided bitmap
     * is not modified.
     */
    Roaring &operator-=(const Roaring &r) noexcept {
        api::roaring_bitmap_andnot_inplace(&roaring, &r.roaring);
        return *this;
    }

    /**
     * Compute the union between the current bitmap and the provided bitmap,
     * writing the result in the current bitmap. The provided bitmap is not
     * modified.
     *
     * See also the fastunion function to aggregate many bitmaps more quickly.
     */
    Roaring &operator|=(const Roaring &r) noexcept {
        api::roaring_bitmap_or_inplace(&roaring, &r.roaring);
        return *this;
    }

    /**
     * Compute the symmetric union between the current bitmap and the provided
     * bitmap, writing the result in the current bitmap. The provided bitmap
     * is not modified.
     */
    Roaring &operator^=(const Roaring &r) noexcept {
        api::roaring_bitmap_xor_inplace(&roaring, &r.roaring);
        return *this;
    }

    /**
     * Exchange the content of this bitmap with another.
     */
    void swap(Roaring &r) noexcept { std::swap(r.roaring, roaring); }

    /**
     * Get the cardinality of the bitmap (number of elements).
     */
    uint64_t cardinality() const noexcept {
        return api::roaring_bitmap_get_cardinality(&roaring);
    }

    /**
     * Returns true if the bitmap is empty (cardinality is zero).
     */
    bool isEmpty() const noexcept { return api::roaring_bitmap_is_empty(&roaring); }

    /**
     * Returns true if the bitmap is subset of the other.
     */
    bool isSubset(const Roaring &r) const noexcept {
        return api::roaring_bitmap_is_subset(&roaring, &r.roaring);
    }

    /**
     * Returns true if the bitmap is strict subset of the other.
     */
    bool isStrictSubset(const Roaring &r) const noexcept {
        return api::roaring_bitmap_is_strict_subset(&roaring, &r.roaring);
    }

    /**
     * Convert the bitmap to an array. Write the output to "ans", caller is
     * responsible to ensure that there is enough memory allocated
     * (e.g., ans = new uint32[mybitmap.cardinality()];)
     */
    void toUint32Array(uint32_t *ans) const noexcept {
        api::roaring_bitmap_to_uint32_array(&roaring, ans);
    }
    /**
     * To int array with pagination
     */
    void rangeUint32Array(uint32_t *ans, size_t offset, size_t limit) const noexcept {
        api::roaring_bitmap_range_uint32_array(&roaring, offset, limit, ans);
    }

    /**
     * Return true if the two bitmaps contain the same elements.
     */
    bool operator==(const Roaring &r) const noexcept {
        return api::roaring_bitmap_equals(&roaring, &r.roaring);
    }

    /**
     * Compute the negation of the roaring bitmap within the half-open interval
     * [range_start, range_end). Areas outside the interval are unchanged.
     */
    void flip(uint64_t range_start, uint64_t range_end) noexcept {
        api::roaring_bitmap_flip_inplace(&roaring, range_start, range_end);
    }

    /**
     * Compute the negation of the roaring bitmap within the closed interval
     * [range_start, range_end]. Areas outside the interval are unchanged.
     */
    void flipClosed(uint32_t range_start, uint32_t range_end) noexcept {
        api::roaring_bitmap_flip_inplace(
            &roaring, range_start, uint64_t(range_end) + 1);
    }

    /**
     * Remove run-length encoding even when it is more space efficient.
     * Return whether a change was applied.
     */
    bool removeRunCompression() noexcept {
        return api::roaring_bitmap_remove_run_compression(&roaring);
    }

    /**
     * Convert array and bitmap containers to run containers when it is more
     * efficient; also convert from run containers when more space efficient.
     * Returns true if the result has at least one run container.  Additional
     * savings might be possible by calling shrinkToFit().
     */
    bool runOptimize() noexcept { return api::roaring_bitmap_run_optimize(&roaring); }

    /**
     * If needed, reallocate memory to shrink the memory usage. Returns
     * the number of bytes saved.
     */
    size_t shrinkToFit() noexcept { return api::roaring_bitmap_shrink_to_fit(&roaring); }

    /**
     * Iterate over the bitmap elements. The function iterator is called once
     * for all the values with ptr (can be NULL) as the second parameter of
     * each call.
     *
     * roaring_iterator is simply a pointer to a function that returns bool
     * (true means that the iteration should continue while false means that it
     * should stop), and takes (uint32_t,void*) as inputs.
     */
    void iterate(api::roaring_iterator iterator, void *ptr) const {
        api::roaring_iterate(&roaring, iterator, ptr);
    }

    /**
     * Selects the value at index rnk in the bitmap, where the smallest value
     * is at index 0.
     *
     * If the size of the roaring bitmap is strictly greater than rank, then
     * this function returns true and sets element to the element of given rank.
     * Otherwise, it returns false.
     */
    bool select(uint32_t rnk, uint32_t *element) const noexcept {
        return api::roaring_bitmap_select(&roaring, rnk, element);
    }

    /**
     * Computes the size of the intersection between two bitmaps.
     */
    uint64_t and_cardinality(const Roaring &r) const noexcept {
        return api::roaring_bitmap_and_cardinality(&roaring, &r.roaring);
    }

    /**
     * Check whether the two bitmaps intersect.
     */
    bool intersect(const Roaring &r) const noexcept {
        return api::roaring_bitmap_intersect(&roaring, &r.roaring);
    }

    /**
     * Computes the Jaccard index between two bitmaps. (Also known as the
     * Tanimoto distance,
     * or the Jaccard similarity coefficient)
     *
     * The Jaccard index is undefined if both bitmaps are empty.
     */
    double jaccard_index(const Roaring &r) const noexcept {
        return api::roaring_bitmap_jaccard_index(&roaring, &r.roaring);
    }

    /**
     * Computes the size of the union between two bitmaps.
     */
    uint64_t or_cardinality(const Roaring &r) const noexcept {
        return api::roaring_bitmap_or_cardinality(&roaring, &r.roaring);
    }

    /**
     * Computes the size of the difference (andnot) between two bitmaps.
     */
    uint64_t andnot_cardinality(const Roaring &r) const noexcept {
        return api::roaring_bitmap_andnot_cardinality(&roaring, &r.roaring);
    }

    /**
     * Computes the size of the symmetric difference (andnot) between two
     * bitmaps.
     */
    uint64_t xor_cardinality(const Roaring &r) const noexcept {
        return api::roaring_bitmap_xor_cardinality(&roaring, &r.roaring);
    }

    /**
     * Returns the number of integers that are smaller or equal to x.
     * Thus the rank of the smallest element is one.  If
     * x is smaller than the smallest element, this function will return 0.
     * The rank and select functions differ in convention: this function returns
     * 1 when ranking the smallest value, but the select function returns the
     * smallest value when using index 0.
     */
    uint64_t rank(uint32_t x) const noexcept {
        return api::roaring_bitmap_rank(&roaring, x);
    }

    /**
     * Returns the index of x in the set, index start from 0.
     * If the set doesn't contain x , this function will return -1.
     * The difference with rank function is that this function will return -1
     * when x isn't in the set, but the rank function will return a
     * non-negative number.
     */
    int64_t getIndex(uint32_t x) const noexcept {
        return api::roaring_bitmap_get_index(&roaring, x);
    }

    /**
     * Write a bitmap to a char buffer. This is meant to be compatible with
     * the Java and Go versions. Returns how many bytes were written which
     * should be getSizeInBytes().
     *
     * Setting the portable flag to false enable a custom format that
     * can save space compared to the portable format (e.g., for very
     * sparse bitmaps).
     *
     * Boost users can serialize bitmaps in this manner:
     *
     *       BOOST_SERIALIZATION_SPLIT_FREE(Roaring)
     *       namespace boost {
     *       namespace serialization {
     *
     *       template <class Archive>
     *       void save(Archive& ar, const Roaring& bitmask,
     *          const unsigned int version) {
     *         std::size_t expected_size_in_bytes = bitmask.getSizeInBytes();
     *         std::vector<char> buffer(expected_size_in_bytes);
     *         std::size_t       size_in_bytes = bitmask.write(buffer.data());
     *
     *         ar& size_in_bytes;
     *         ar& boost::serialization::make_binary_object(buffer.data(),
     *             size_in_bytes);
     *      }
     *      template <class Archive>
     *      void load(Archive& ar, Roaring& bitmask,
     *          const unsigned int version) {
     *         std::size_t size_in_bytes = 0;
     *         ar& size_in_bytes;
     *         std::vector<char> buffer(size_in_bytes);
     *         ar&  boost::serialization::make_binary_object(buffer.data(),
     *            size_in_bytes);
     *         bitmask = Roaring::readSafe(buffer.data(), size_in_bytes);
     *      }
     *      }  // namespace serialization
     *      }  // namespace boost
     */
    size_t write(char *buf, bool portable = true) const noexcept {
        if (portable) {
            return api::roaring_bitmap_portable_serialize(&roaring, buf);
        } else {
            return api::roaring_bitmap_serialize(&roaring, buf);
        }
    }

    /**
     * Read a bitmap from a serialized version. This is meant to be compatible
     * with the Java and Go versions.
     *
     * Setting the portable flag to false enable a custom format that
     * can save space compared to the portable format (e.g., for very
     * sparse bitmaps).
     *
     * This function is unsafe in the sense that if you provide bad data,
     * many, many bytes could be read. See also readSafe.
     *
     * The function may throw std::runtime_error if a bitmap could not be read. Not that even
     * if it does not throw, the bitmap could still be unusable if the loaded
     * data does not match the portable Roaring specification: you should
     * ensure that the data you load come from a serialized bitmap.
     */
    static Roaring read(const char *buf, bool portable = true) {
        roaring_bitmap_t * r = portable
            ? api::roaring_bitmap_portable_deserialize(buf)
            : api::roaring_bitmap_deserialize(buf);
        if (r == NULL) {
            ROARING_TERMINATE("failed alloc while reading");
        }
        return Roaring(r);
    }

    /**
     * Read a bitmap from a serialized version, reading no more than maxbytes
     * bytes.  This is meant to be compatible with the Java and Go versions.
     * The function itself is safe in the sense that it will not cause buffer overflows.
     * However, for correct operations, it is assumed that the bitmap read was once
     * serialized from a valid bitmap. If you provided an incorrect input (garbage), then the
     * bitmap read may not be in a valid state and following operations may not lead
     * to sensible results. It is your responsability to ensure that the input bytes
     * follow the format specification if you want a usable bitmap:
     * https://github.com/RoaringBitmap/RoaringFormatSpec
     * In particular, the serialized array containers need to be in sorted order, and the
     * run containers should be in sorted non-overlapping order. This is is guaranteed to
     * happen when serializing an existing bitmap, but not for random inputs.
     * Note that this function assumes that your bitmap was serialized in *portable* mode
     * (which is the default with the 'write' method).
     *
     * The function may throw std::runtime_error if a bitmap could not be read. Not that even
     * if it does not throw, the bitmap could still be unusable if the loaded
     * data does not match the portable Roaring specification: you should
     * ensure that the data you load come from a serialized bitmap.
     */
    static Roaring readSafe(const char *buf, size_t maxbytes) {
        roaring_bitmap_t * r =
            api::roaring_bitmap_portable_deserialize_safe(buf,maxbytes);
        if (r == NULL) {
            ROARING_TERMINATE("failed alloc while reading");
        }
        return Roaring(r);
    }

    /**
     * How many bytes are required to serialize this bitmap (meant to be
     * compatible with Java and Go versions)
     *
     * Setting the portable flag to false enable a custom format that
     * can save space compared to the portable format (e.g., for very
     * sparse bitmaps).
     */
    size_t getSizeInBytes(bool portable = true) const noexcept {
        if (portable) {
            return api::roaring_bitmap_portable_size_in_bytes(&roaring);
        } else {
            return api::roaring_bitmap_size_in_bytes(&roaring);
        }
    }

    /**
     * For advanced users.
     * This function may throw std::runtime_error.
     */
    static const Roaring frozenView(const char *buf, size_t length) {
        const roaring_bitmap_t *s =
            api::roaring_bitmap_frozen_view(buf, length);
        if (s == NULL) {
            ROARING_TERMINATE("failed to read frozen bitmap");
        }
        Roaring r;
        r.roaring = *s;
        return r;
    }

    /**
     * For advanced users.
     */
    void writeFrozen(char *buf) const noexcept {
        roaring_bitmap_frozen_serialize(&roaring, buf);
    }

    /**
     * For advanced users.
     */
    size_t getFrozenSizeInBytes() const noexcept {
        return roaring_bitmap_frozen_size_in_bytes(&roaring);
    }

    /**
     * Computes the intersection between two bitmaps and returns new bitmap.
     * The current bitmap and the provided bitmap are unchanged.
     *
     * Performance hint: if you are computing the intersection between several
     * bitmaps, two-by-two, it is best to start with the smallest bitmap.
     * Consider also using the operator &= to avoid needlessly creating
     * many temporary bitmaps.
     * This function may throw std::runtime_error.
     */
    Roaring operator&(const Roaring &o) const {
        roaring_bitmap_t *r = api::roaring_bitmap_and(&roaring, &o.roaring);
        if (r == NULL) {
            ROARING_TERMINATE("failed materalization in and");
        }
        return Roaring(r);
    }

    /**
     * Computes the difference between two bitmaps and returns new bitmap.
     * The current bitmap and the provided bitmap are unchanged.
     * This function may throw std::runtime_error.
     */
    Roaring operator-(const Roaring &o) const {
        roaring_bitmap_t *r = api::roaring_bitmap_andnot(&roaring, &o.roaring);
        if (r == NULL) {
            ROARING_TERMINATE("failed materalization in andnot");
        }
        return Roaring(r);
    }

    /**
     * Computes the union between two bitmaps and returns new bitmap.
     * The current bitmap and the provided bitmap are unchanged.
     * This function may throw std::runtime_error.
     */
    Roaring operator|(const Roaring &o) const {
        roaring_bitmap_t *r = api::roaring_bitmap_or(&roaring, &o.roaring);
        if (r == NULL) {
            ROARING_TERMINATE("failed materalization in or");
        }
        return Roaring(r);
    }

    /**
     * Computes the symmetric union between two bitmaps and returns new bitmap.
     * The current bitmap and the provided bitmap are unchanged.
     * This function may throw std::runtime_error.
     */
    Roaring operator^(const Roaring &o) const {
        roaring_bitmap_t *r = api::roaring_bitmap_xor(&roaring, &o.roaring);
        if (r == NULL) {
            ROARING_TERMINATE("failed materalization in xor");
        }
        return Roaring(r);
    }

    /**
     * Whether or not we apply copy and write.
     */
    void setCopyOnWrite(bool val) noexcept {
        api::roaring_bitmap_set_copy_on_write(&roaring, val);
    }

    /**
     * Print the content of the bitmap
     */
    void printf() const noexcept { api::roaring_bitmap_printf(&roaring); }

    /**
     * Print the content of the bitmap into a string
     */
    std::string toString() const noexcept {
        struct iter_data {
            std::string str{}; // The empty constructor silences warnings from pedantic static analyzers.
            char first_char = '{';
        } outer_iter_data;
        if (!isEmpty()) {
            iterate(
                [](uint32_t value, void *inner_iter_data) -> bool {
                    ((iter_data *)inner_iter_data)->str +=
                        ((iter_data *)inner_iter_data)->first_char;
                    ((iter_data *)inner_iter_data)->str +=
                        std::to_string(value);
                    ((iter_data *)inner_iter_data)->first_char = ',';
                    return true;
                },
                (void *)&outer_iter_data);
        } else
            outer_iter_data.str = '{';
        outer_iter_data.str += '}';
        return outer_iter_data.str;
    }

    /**
     * Whether or not copy and write is active.
     */
    bool getCopyOnWrite() const noexcept {
        return api::roaring_bitmap_get_copy_on_write(&roaring);
    }

    /**
     * Computes the logical or (union) between "n" bitmaps (referenced by a
     * pointer).
     * This function may throw std::runtime_error.
     */
    static Roaring fastunion(size_t n, const Roaring **inputs) {
        const roaring_bitmap_t **x =
            (const roaring_bitmap_t **)roaring_malloc(n * sizeof(roaring_bitmap_t *));
        if (x == NULL) {
            ROARING_TERMINATE("failed memory alloc in fastunion");
        }
        for (size_t k = 0; k < n; ++k) x[k] = &inputs[k]->roaring;

        roaring_bitmap_t *c_ans = api::roaring_bitmap_or_many(n, x);
        if (c_ans == NULL) {
            roaring_free(x);
            ROARING_TERMINATE("failed memory alloc in fastunion");
        }
        Roaring ans(c_ans);
        roaring_free(x);
        return ans;
    }

    typedef RoaringSetBitForwardIterator const_iterator;

    /**
     * Returns an iterator that can be used to access the position of the set
     * bits. The running time complexity of a full scan is proportional to the
     * number of set bits: be aware that if you have long strings of 1s, this
     * can be very inefficient.
     *
     * It can be much faster to use the toArray method if you want to retrieve
     * the set bits.
     */
    const_iterator begin() const;

    /**
     * A bogus iterator that can be used together with begin()
     * for constructions such as for (auto i = b.begin(); * i!=b.end(); ++i) {}
     */
    const_iterator &end() const;

    roaring_bitmap_t roaring;
};

/**
 * Used to go through the set bits. Not optimally fast, but convenient.
 */
class RoaringSetBitForwardIterator final {
public:
    typedef std::forward_iterator_tag iterator_category;
    typedef uint32_t *pointer;
    typedef uint32_t &reference_type;
    typedef uint32_t value_type;
    typedef int32_t difference_type;
    typedef RoaringSetBitForwardIterator type_of_iterator;

    /**
     * Provides the location of the set bit.
     */
    value_type operator*() const { return i.current_value; }

    bool operator<(const type_of_iterator &o) const {
        if (!i.has_value) return false;
        if (!o.i.has_value) return true;
        return i.current_value < *o;
    }

    bool operator<=(const type_of_iterator &o) const {
        if (!o.i.has_value) return true;
        if (!i.has_value) return false;
        return i.current_value <= *o;
    }

    bool operator>(const type_of_iterator &o)  const {
        if (!o.i.has_value) return false;
        if (!i.has_value) return true;
        return i.current_value > *o;
    }

    bool operator>=(const type_of_iterator &o)  const {
        if (!i.has_value) return true;
        if (!o.i.has_value) return false;
        return i.current_value >= *o;
    }

    /**
     * Move the iterator to the first value >= val.
     */
    void equalorlarger(uint32_t val) {
        api::roaring_move_uint32_iterator_equalorlarger(&i,val);
    }

    type_of_iterator &operator++() {  // ++i, must returned inc. value
        api::roaring_advance_uint32_iterator(&i);
        return *this;
    }

    type_of_iterator operator++(int) {  // i++, must return orig. value
        RoaringSetBitForwardIterator orig(*this);
        api::roaring_advance_uint32_iterator(&i);
        return orig;
    }

    type_of_iterator& operator--() { // prefix --
        api::roaring_previous_uint32_iterator(&i);
        return *this;
    }

    type_of_iterator operator--(int) { // postfix --
        RoaringSetBitForwardIterator orig(*this);
        api::roaring_previous_uint32_iterator(&i);
        return orig;
    }

    bool operator==(const RoaringSetBitForwardIterator &o) const {
        return i.current_value == *o && i.has_value == o.i.has_value;
    }

    bool operator!=(const RoaringSetBitForwardIterator &o) const {
        return i.current_value != *o || i.has_value != o.i.has_value;
    }

    explicit RoaringSetBitForwardIterator(const Roaring &parent,
                                          bool exhausted = false) {
        if (exhausted) {
            i.parent = &parent.roaring;
            i.container_index = INT32_MAX;
            i.has_value = false;
            i.current_value = UINT32_MAX;
        } else {
            api::roaring_init_iterator(&parent.roaring, &i);
        }
    }

    api::roaring_uint32_iterator_t i{}; // The empty constructor silences warnings from pedantic static analyzers.
};

inline RoaringSetBitForwardIterator Roaring::begin() const {
    return RoaringSetBitForwardIterator(*this);
}

inline RoaringSetBitForwardIterator &Roaring::end() const {
    static RoaringSetBitForwardIterator e(*this, true);
    return e;
}

}  // namespace roaring

#endif /* INCLUDE_ROARING_HH_ */