1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
// Copyright 2010 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Defines GfUtil template class which implements
// 1. some useful operations in GF(2^n),
// 2. CRC helper function (e.g. concatenation of CRCs) which are
// not affected by specific implemenation of CRC computation per se.
//
// Please read crc.pdf to understand how it all works.
#ifndef CRCUTIL_GF_UTIL_H_
#define CRCUTIL_GF_UTIL_H_
#include "base_types.h" // uint8, uint64
#include "crc_casts.h" // TO_BYTE()
#include "platform.h" // GCC_ALIGN_ATTRIBUTE(16), SHIFT_*_SAFE
namespace crcutil {
#pragma pack(push, 16)
// "Crc" is the type used internally and to return values of N-bit CRC.
template<typename Crc> class GfUtil {
public:
// Initializes the tables given generating polynomial of degree (degree).
// If "canonical" is true, starting CRC value and computed CRC value will be
// XOR-ed with 111...111.
GfUtil() {}
GfUtil(const Crc &generating_polynomial, size_t degree, bool canonical) {
Init(generating_polynomial, degree, canonical);
}
void Init(const Crc &generating_polynomial, size_t degree, bool canonical) {
Crc one = 1;
one <<= degree - 1;
this->generating_polynomial_ = generating_polynomial;
this->crc_bytes_ = (degree + 7) >> 3;
this->degree_ = degree;
this->one_ = one;
if (canonical) {
this->canonize_ = one | (one - 1);
} else {
this->canonize_ = 0;
}
this->normalize_[0] = 0;
this->normalize_[1] = generating_polynomial;
Crc k = one >> 1;
for (size_t i = 0; i < sizeof(uint64) * 8; ++i) {
this->x_pow_2n_[i] = k;
k = Multiply(k, k);
}
this->crc_of_crc_ = Multiply(this->canonize_,
this->one_ ^ Xpow8N((degree + 7) >> 3));
FindLCD(Xpow8N(this->crc_bytes_), &this->x_pow_minus_W_);
}
// Returns generating polynomial.
Crc GeneratingPolynomial() const {
return this->generating_polynomial_;
}
// Returns number of bits in CRC (degree of generating polynomial).
size_t Degree() const {
return this->degree_;
}
// Returns start/finish adjustment constant.
Crc Canonize() const {
return this->canonize_;
}
// Returns normalized value of 1.
Crc One() const {
return this->one_;
}
// Returns value of CRC(A, |A|, start_new) given known
// crc=CRC(A, |A|, start_old) -- without touching the data.
Crc ChangeStartValue(const Crc &crc, uint64 bytes,
const Crc &start_old,
const Crc &start_new) const {
return (crc ^ Multiply(start_new ^ start_old, Xpow8N(bytes)));
}
// Returns CRC of concatenation of blocks A and B when CRCs
// of blocks A and B are known -- without touching the data.
//
// To be precise, given CRC(A, |A|, startA) and CRC(B, |B|, 0),
// returns CRC(AB, |AB|, startA).
Crc Concatenate(const Crc &crc_A, const Crc &crc_B, uint64 bytes_B) const {
return ChangeStartValue(crc_B, bytes_B, 0 /* start_B */, crc_A);
}
// Returns CRC of sequence of zeroes -- without touching the data.
Crc CrcOfZeroes(uint64 bytes, const Crc &start) const {
Crc tmp = Multiply(start ^ this->canonize_, Xpow8N(bytes));
return (tmp ^ this->canonize_);
}
// Given CRC of a message, stores extra (degree + 7)/8 bytes after
// the message so that CRC(message+extra, start) = result.
// Does not change CRC start value (use ChangeStartValue for that).
// Returns number of stored bytes.
size_t StoreComplementaryCrc(void *dst,
const Crc &message_crc,
const Crc &result) const {
Crc crc0 = Multiply(result ^ this->canonize_, this->x_pow_minus_W_);
crc0 ^= message_crc ^ this->canonize_;
uint8 *d = reinterpret_cast<uint8 *>(dst);
for (size_t i = 0; i < this->crc_bytes_; ++i) {
d[i] = TO_BYTE(crc0);
crc0 >>= 8;
}
return this->crc_bytes_;
}
// Stores given CRC of a message as (degree + 7)/8 bytes filled
// with 0s to the right. Returns number of stored bytes.
// CRC of the message and stored CRC is a constant value returned
// by CrcOfCrc() -- it does not depend on contents of the message.
size_t StoreCrc(void *dst, const Crc &crc) const {
uint8 *d = reinterpret_cast<uint8 *>(dst);
Crc crc0 = crc;
for (size_t i = 0; i < this->crc_bytes_; ++i) {
d[i] = TO_BYTE(crc0);
crc0 >>= 8;
}
return this->crc_bytes_;
}
// Returns expected CRC value of CRC(Message,CRC(Message))
// when CRC is stored after the message. This value is fixed
// and does not depend on the message or CRC start value.
Crc CrcOfCrc() const {
return this->crc_of_crc_;
}
// Returns ((a * b) mod P) where "a" and "b" are of degree <= (D-1).
Crc Multiply(const Crc &aa, const Crc &bb) const {
Crc a = aa;
Crc b = bb;
if ((a ^ (a - 1)) < (b ^ (b - 1))) {
Crc temp = a;
a = b;
b = temp;
}
if (a == 0) {
return a;
}
Crc product = 0;
Crc one = this->one_;
for (; a != 0; a <<= 1) {
if ((a & one) != 0) {
product ^= b;
a ^= one;
}
b = (b >> 1) ^ this->normalize_[Downcast<Crc, size_t>(b & 1)];
}
return product;
}
// Returns ((unnorm * m) mod P) where degree of m is <= (D-1)
// and degree of value "unnorm" is provided explicitly.
Crc MultiplyUnnormalized(const Crc &unnorm, size_t degree,
const Crc &m) const {
Crc v = unnorm;
Crc result = 0;
while (degree > this->degree_) {
degree -= this->degree_;
Crc value = v & (this->one_ | (this->one_ - 1));
result ^= Multiply(value, Multiply(m, XpowN(degree)));
v >>= this->degree_;
}
result ^= Multiply(v << (this->degree_ - degree), m);
return result;
}
// returns ((x ** n) mod P).
Crc XpowN(uint64 n) const {
Crc one = this->one_;
Crc result = one;
for (size_t i = 0; n != 0; ++i, n >>= 1) {
if (n & 1) {
result = Multiply(result, this->x_pow_2n_[i]);
}
}
return result;
}
// Returns (x ** (8 * n) mod P).
Crc Xpow8N(uint64 n) const {
return XpowN(n << 3);
}
// Returns remainder (A mod B) and sets *q = (A/B) of division
// of two polynomials:
// A = dividend + dividend_x_pow_D_coef * x**degree,
// B = divisor.
Crc Divide(const Crc ÷nd0, int dividend_x_pow_D_coef,
const Crc &divisor0, Crc *q) const {
Crc divisor = divisor0;
Crc dividend = dividend0;
Crc quotient = 0;
Crc coef = this->one_;
while ((divisor & 1) == 0) {
divisor >>= 1;
coef >>= 1;
}
if (dividend_x_pow_D_coef) {
quotient = coef >> 1;
dividend ^= divisor >> 1;
}
Crc x_pow_degree_b = 1;
for (;;) {
if ((dividend & x_pow_degree_b) != 0) {
dividend ^= divisor;
quotient ^= coef;
}
if (coef == this->one_) {
break;
}
coef <<= 1;
x_pow_degree_b <<= 1;
divisor <<= 1;
}
*q = quotient;
return dividend;
}
// Extended Euclid's algorith -- for given A finds LCD(A, P) and
// value B such that (A * B) mod P = LCD(A, P).
Crc FindLCD(const Crc &A, Crc *B) const {
if (A == 0 || A == this->one_) {
*B = A;
return A;
}
// Actually, generating polynomial is
// (generating_polynomial_ + x**degree).
int r0_x_pow_D_coef = 1;
Crc r0 = this->generating_polynomial_;
Crc b0 = 0;
Crc r1 = A;
Crc b1 = this->one_;
for (;;) {
Crc q;
Crc r = Divide(r0, r0_x_pow_D_coef, r1, &q);
if (r == 0) {
break;
}
r0_x_pow_D_coef = 0;
r0 = r1;
r1 = r;
Crc b = b0 ^ Multiply(q, b1);
b0 = b1;
b1 = b;
}
*B = b1;
return r1;
}
protected:
Crc canonize_;
Crc x_pow_2n_[sizeof(uint64) * 8];
Crc generating_polynomial_;
Crc one_;
Crc x_pow_minus_W_;
Crc crc_of_crc_;
Crc normalize_[2];
size_t crc_bytes_;
size_t degree_;
} GCC_ALIGN_ATTRIBUTE(16);
#pragma pack(pop)
} // namespace crcutil
#endif // CRCUTIL_GF_UTIL_H_
|