1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
// Copyright 2010 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implements CRC32C using Intel's SSE4 crc32 instruction.
// Uses _mm_crc32_u64/32/8 intrinsics if CRCUTIL_USE_MM_CRC32 is not zero,
// emilates intrinsics via CRC_WORD/CRC_BYTE otherwise.
#include "crc32c_sse4.h"
#include <util/system/compiler.h>
#if HAVE_I386 || HAVE_AMD64
namespace crcutil {
#define UPDATE_STRIPE_CRCS(index, block_size, num_stripes) do { \
CRC_UPDATE_WORD(crc0, \
reinterpret_cast<const size_t *>(src + \
0 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
CRC_UPDATE_WORD(crc1, \
reinterpret_cast<const size_t *>(src + \
1 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
CRC_UPDATE_WORD(crc2, \
reinterpret_cast<const size_t *>(src + \
2 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
if (num_stripes > 3) { \
CRC_UPDATE_WORD(crc3, \
reinterpret_cast<const size_t *>(src + \
3 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
} \
} while (0)
// Multiplies "crc" by "x**(8 * STRIPE_SIZE(block_size)"
// using appropriate multiplication table(s).
//
#if 0
// This variant is for illustration purposes only.
// Actual implementation below:
// 1. Splits the computation into 2 data-independent paths
// by independently multiplying lower and upper halves
// of "crc0" in interleaved manner, and combining the
// results in the end.
// 2. Removing redundant "crc0 = 0" etc. in the beginning.
// 3. Removing redundant shifts of "tmp0" and "tmp1" in the last round.
#define MULTIPLY_CRC(crc0, block_size, num_stripes) do { \
size_t tmp0 = crc0; \
crc0 = 0; \
for (size_t i = 0; i < kNumTables; ++i) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
} \
} while (0)
#else
#define MULTIPLY_CRC(crc0, block_size, num_stripes) do { \
size_t tmp0 = crc0; \
size_t tmp1 = crc0 >> (kTableEntryBits * kNumTablesHalfHi); \
crc0 = CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[0][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
size_t crc1 = CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfHi][tmp1 & (kTableEntries - 1)]; \
tmp1 >>= kTableEntryBits; \
for (size_t i = 1; i < kNumTablesHalfLo - 1; ++i) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
crc1 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i + kNumTablesHalfHi][tmp1 & (kTableEntries - 1)]; \
tmp1 >>= kTableEntryBits; \
} \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfLo - 1][tmp0 & (kTableEntries - 1)]; \
if (kNumTables & 1) { \
tmp0 >>= kTableEntryBits; \
} \
crc1 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTables - 1][tmp1]; \
if (kNumTables & 1) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfLo][tmp0 & (kTableEntries - 1)]; \
} \
crc0 ^= crc1; \
} while (0)
#endif
// Given CRCs (crc0, crc1, etc.) of consequitive
// stripes of STRIPE_SIZE(block_size) bytes each,
// produces CRC of concatenated stripes.
#define COMBINE_STRIPE_CRCS(block_size, num_stripes) do { \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc1; \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc2; \
if (num_stripes > 3) { \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc3; \
} \
} while (0)
// Processes input BLOCK_SIZE(block) bytes per iteration
// by splitting a block of BLOCK_SIZE(block) bytes into N
// equally-sized stripes of STRIPE_SIZE(block_size) each,
// computing CRC of each stripe, and concatenating stripe CRCs.
#define PROCESS_BLOCK(block_size, num_stripes) do { \
while (bytes >= CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
Crc crc1 = 0; \
Crc crc2 = 0; \
Crc crc3; \
if (num_stripes > 3) crc3 = 0; \
{ \
const uint8 *stripe_end = src + \
(CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) / \
kUnrolledLoopBytes) * kUnrolledLoopBytes; \
do { \
UPDATE_STRIPE_CRCS(0, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(1, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(2, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(3, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(4, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(5, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(6, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(7, block_size, num_stripes); \
src += kUnrolledLoopBytes; \
} while (src < stripe_end); \
if ((CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) % \
kUnrolledLoopBytes) != 0) { \
stripe_end += \
CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) % \
kUnrolledLoopBytes; \
do { \
UPDATE_STRIPE_CRCS(0, block_size, num_stripes); \
src += sizeof(size_t); \
} while (src < stripe_end); \
} \
} \
COMBINE_STRIPE_CRCS(block_size, num_stripes); \
src += CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) * \
((num_stripes) - 1); \
bytes = static_cast<size_t>(end - src); \
} \
no_more_##block_size##_##num_stripes:; \
} while (0)
Y_NO_SANITIZE("undefined")
size_t Crc32cSSE4::Crc32c(const void *data, size_t bytes, Crc crc0) const {
const uint8 *src = static_cast<const uint8 *>(data);
const uint8 *end = src + bytes;
crc0 ^= Base().Canonize();
// If we don't have too much data to process,
// do not waste time trying to align input etc.
// Noticeably improves performance on small inputs.
if (bytes < 4 * sizeof(size_t)) goto less_than_4_size_t;
if (bytes < 8 * sizeof(size_t)) goto less_than_8_size_t;
if (bytes < 16 * sizeof(size_t)) goto less_than_16_size_t;
#define PROCESS_TAIL_IF_SMALL(block_size, num_stripes) do { \
if (bytes < CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
goto no_more_##block_size##_##num_stripes; \
} \
} while (0)
#define NOOP(block_size, num_stripes)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_ASCENDING(PROCESS_TAIL_IF_SMALL,
NOOP,
NOOP);
#undef PROCESS_TAIL_IF_SMALL
// Do not use ALIGN_ON_WORD_BOUNDARY_IF_NEEDED() here because:
// 1. It uses CRC_BYTE() which won't work.
// 2. Its threshold may be incorrect becuase Crc32 that uses
// native CPU crc32 instruction is much faster than
// generic table-based CRC computation.
//
// In case of X5550 CPU, break even point is at 2KB -- exactly.
if (bytes >= 2 * 1024) {
while ((reinterpret_cast<size_t>(src) & (sizeof(Word) - 1)) != 0) {
if (src >= end) {
return (crc0 ^ Base().Canonize());
}
CRC_UPDATE_BYTE(crc0, src[0]);
src += 1;
}
bytes = static_cast<size_t>(end - src);
}
if (src >= end) {
return (crc0 ^ Base().Canonize());
}
// Quickly skip processing of too large blocks
// Noticeably improves performance on small inputs.
#define SKIP_BLOCK_IF_NEEDED(block_size, num_stripes) do { \
if (bytes < CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
goto no_more_##block_size##_##num_stripes; \
} \
} while (0)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_ASCENDING(NOOP,
SKIP_BLOCK_IF_NEEDED,
SKIP_BLOCK_IF_NEEDED);
#undef SKIP_BLOCK_IF_NEEDED
// Process data in all blocks.
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_DESCENDING(PROCESS_BLOCK,
PROCESS_BLOCK,
PROCESS_BLOCK);
// Finish the tail word-by-word and then byte-by-byte.
#define CRC_UPDATE_WORD_4(index) do { \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 1]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 2]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 3]); \
} while (0)
if (bytes >= 4 * 4 * sizeof(size_t)) {
end -= 4 * 4 * sizeof(size_t);
do {
CRC_UPDATE_WORD_4(4 * 0);
CRC_UPDATE_WORD_4(4 * 1);
CRC_UPDATE_WORD_4(4 * 2);
CRC_UPDATE_WORD_4(4 * 3);
src += 4 * 4 * sizeof(size_t);
} while (src <= end);
end += 4 * 4 * sizeof(size_t);
bytes = static_cast<size_t>(end - src);
}
less_than_16_size_t:
if (bytes >= 4 * 2 * sizeof(size_t)) {
CRC_UPDATE_WORD_4(4 * 0);
CRC_UPDATE_WORD_4(4 * 1);
src += 4 * 2 * sizeof(size_t);
bytes -= 4 * 2 * sizeof(size_t);
}
less_than_8_size_t:
if (bytes >= 4 * sizeof(size_t)) {
CRC_UPDATE_WORD_4(0);
src += 4 * sizeof(size_t);
bytes -= 4 * sizeof(size_t);
}
less_than_4_size_t:
if (bytes >= 1 * sizeof(size_t)) {
end -= 1 * sizeof(size_t);
do {
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[0]);
src += 1 * sizeof(size_t);
} while (src <= end);
end += 1 * sizeof(size_t);
}
while (src < end) {
CRC_UPDATE_BYTE(crc0, src[0]);
src += 1;
}
return (crc0 ^ Base().Canonize());
}
void Crc32cSSE4::Init(bool constant) {
base_.Init(FixedGeneratingPolynomial(), FixedDegree(), constant);
#define INIT_MUL_TABLE(block_size, num_stripes) do { \
size_t multiplier = \
Base().Xpow8N(CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes)); \
for (size_t table = 0; table < kNumTables; ++table) { \
for (size_t entry = 0; entry < kTableEntries; ++entry) { \
size_t value = static_cast<uint32>(entry << (kTableEntryBits * table)); \
CRC32C_SSE4_MUL_TABLE(block_size, num_stripes)[table][entry] = \
static_cast<Entry>(Base().Multiply(value, multiplier)); \
} \
} \
} while (0)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS(INIT_MUL_TABLE);
#undef INIT_MUL_TABLE
#if !CRCUTIL_USE_MM_CRC32
for (size_t j = 0; j < sizeof(Word); ++j) {
Crc k = Base().XpowN((sizeof(Word) - 1 - j) * 8 + 32);
for (size_t i = 0; i < 256; ++i) {
crc_word_[j][i] = Base().MultiplyUnnormalized(i, 8, k);
}
}
#endif // !CRCUTIL_USE_MM_CRC32
}
bool Crc32cSSE4::IsSSE42Available() {
#if defined(_MSC_VER)
int cpu_info[4];
__cpuid(cpu_info, 1);
return ((cpu_info[2] & (1 << 20)) != 0);
#elif defined(__GNUC__) && (HAVE_AMD64 || HAVE_I386)
// Not using "cpuid.h" intentionally: it is missing from
// too many installations.
uint32 eax;
uint32 ecx;
uint32 edx;
__asm__ volatile(
#if HAVE_I386 && defined(__PIC__)
"push %%ebx\n"
"cpuid\n"
"pop %%ebx\n"
#else
"cpuid\n"
#endif // HAVE_I386 && defined(__PIC__)
: "=a" (eax), "=c" (ecx), "=d" (edx)
: "a" (1), "2" (0)
: "%ebx"
);
return ((ecx & (1 << 20)) != 0);
#else
return false;
#endif
}
void RollingCrc32cSSE4::Init(const Crc32cSSE4 &crc,
size_t roll_window_bytes,
const Crc &start_value) {
crc_ = &crc;
roll_window_bytes_ = roll_window_bytes;
start_value_ = start_value;
Crc add = crc.Base().Canonize() ^ start_value;
add = crc.Base().Multiply(add, crc.Base().Xpow8N(roll_window_bytes));
add ^= crc.Base().Canonize();
Crc mul = crc.Base().One() ^ crc.Base().Xpow8N(1);
add = crc.Base().Multiply(add, mul);
mul = crc.Base().XpowN(8 * roll_window_bytes + crc.Base().Degree());
for (size_t i = 0; i < 256; ++i) {
out_[i] = static_cast<Entry>(
crc.Base().MultiplyUnnormalized(
static_cast<Crc>(i), 8, mul) ^ add);
}
#if !CRCUTIL_USE_MM_CRC32
memcpy(crc_word_, crc_->crc_word_, sizeof(crc_word_));
#endif // !CRCUTIL_USE_MM_CRC32
}
} // namespace crcutil
#endif // HAVE_I386 || HAVE_AMD64
|