1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/* zunmrq.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__65 = 65;
/* Subroutine */ int zunmrq_(char *side, char *trans, integer *m, integer *n,
integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
i__5;
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__;
doublecomplex t[4160] /* was [65][64] */;
integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
logical left;
extern logical lsame_(char *, char *);
integer nbmin, iinfo;
extern /* Subroutine */ int zunmr2_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
logical notran;
integer ldwork;
extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *);
char transt[1];
integer lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZUNMRQ overwrites the general complex M-by-N matrix C with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': Q * C C * Q */
/* TRANS = 'C': Q**H * C C * Q**H */
/* where Q is a complex unitary matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(1)' H(2)' . . . H(k)' */
/* as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q**H from the Left; */
/* = 'R': apply Q or Q**H from the Right. */
/* TRANS (input) CHARACTER*1 */
/* = 'N': No transpose, apply Q; */
/* = 'C': Transpose, apply Q**H. */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) COMPLEX*16 array, dimension */
/* (LDA,M) if SIDE = 'L', */
/* (LDA,N) if SIDE = 'R' */
/* The i-th row must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* ZGERQF in the last k rows of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,K). */
/* TAU (input) COMPLEX*16 array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by ZGERQF. */
/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If SIDE = 'L', LWORK >= max(1,N); */
/* if SIDE = 'R', LWORK >= max(1,M). */
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = max(1,*n);
} else {
nq = *n;
nw = max(1,*m);
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "C")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,*k)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
}
if (*info == 0) {
if (*m == 0 || *n == 0) {
lwkopt = 1;
} else {
/* Determine the block size. NB may be at most NBMAX, where */
/* NBMAX is used to define the local array T. */
/* Computing MIN */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 64, i__2 = ilaenv_(&c__1, "ZUNMRQ", ch__1, m, n, k, &c_n1);
nb = min(i__1,i__2);
lwkopt = nw * nb;
}
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
if (*lwork < nw && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZUNMRQ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
nbmin = 2;
ldwork = nw;
if (nb > 1 && nb < *k) {
iws = nw * nb;
if (*lwork < iws) {
nb = *lwork / ldwork;
/* Computing MAX */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNMRQ", ch__1, m, n, k, &c_n1);
nbmin = max(i__1,i__2);
}
} else {
iws = nw;
}
if (nb < nbmin || nb >= *k) {
/* Use unblocked code */
zunmr2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo);
} else {
/* Use blocked code */
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = nb;
} else {
i1 = (*k - 1) / nb * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = *n;
} else {
mi = *m;
}
if (notran) {
*(unsigned char *)transt = 'C';
} else {
*(unsigned char *)transt = 'N';
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
/* Form the triangular factor of the block reflector */
/* H = H(i+ib-1) . . . H(i+1) H(i) */
i__4 = nq - *k + i__ + ib - 1;
zlarft_("Backward", "Rowwise", &i__4, &ib, &a[i__ + a_dim1], lda,
&tau[i__], t, &c__65);
if (left) {
/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */
mi = *m - *k + i__ + ib - 1;
} else {
/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */
ni = *n - *k + i__ + ib - 1;
}
/* Apply H or H' */
zlarfb_(side, transt, "Backward", "Rowwise", &mi, &ni, &ib, &a[
i__ + a_dim1], lda, t, &c__65, &c__[c_offset], ldc, &work[
1], &ldwork);
/* L10: */
}
}
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
return 0;
/* End of ZUNMRQ */
} /* zunmrq_ */
|