aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zunm2l.c
blob: 4a49f63a306b1b159e78741adc6e79f1aedca0b6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* zunm2l.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int zunm2l_(char *side, char *trans, integer *m, integer *n, 
	integer *k, doublecomplex *a, integer *lda, doublecomplex *tau, 
	doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
    doublecomplex z__1;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, i1, i2, i3, mi, ni, nq;
    doublecomplex aii;
    logical left;
    doublecomplex taui;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *), xerbla_(char *, integer *);
    logical notran;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZUNM2L overwrites the general complex m-by-n matrix C with */

/*        Q * C  if SIDE = 'L' and TRANS = 'N', or */

/*        Q'* C  if SIDE = 'L' and TRANS = 'C', or */

/*        C * Q  if SIDE = 'R' and TRANS = 'N', or */

/*        C * Q' if SIDE = 'R' and TRANS = 'C', */

/*  where Q is a complex unitary matrix defined as the product of k */
/*  elementary reflectors */

/*        Q = H(k) . . . H(2) H(1) */

/*  as returned by ZGEQLF. Q is of order m if SIDE = 'L' and of order n */
/*  if SIDE = 'R'. */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply Q or Q' from the Left */
/*          = 'R': apply Q or Q' from the Right */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N': apply Q  (No transpose) */
/*          = 'C': apply Q' (Conjugate transpose) */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. N >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines */
/*          the matrix Q. */
/*          If SIDE = 'L', M >= K >= 0; */
/*          if SIDE = 'R', N >= K >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,K) */
/*          The i-th column must contain the vector which defines the */
/*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
/*          ZGEQLF in the last k columns of its array argument A. */
/*          A is modified by the routine but restored on exit. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          If SIDE = 'L', LDA >= max(1,M); */
/*          if SIDE = 'R', LDA >= max(1,N). */

/*  TAU     (input) COMPLEX*16 array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by ZGEQLF. */

/*  C       (input/output) COMPLEX*16 array, dimension (LDC,N) */
/*          On entry, the m-by-n matrix C. */
/*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                                   (N) if SIDE = 'L', */
/*                                   (M) if SIDE = 'R' */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = lsame_(side, "L");
    notran = lsame_(trans, "N");

/*     NQ is the order of Q */

    if (left) {
	nq = *m;
    } else {
	nq = *n;
    }
    if (! left && ! lsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "C")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZUNM2L", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || *k == 0) {
	return 0;
    }

    if (left && notran || ! left && ! notran) {
	i1 = 1;
	i2 = *k;
	i3 = 1;
    } else {
	i1 = *k;
	i2 = 1;
	i3 = -1;
    }

    if (left) {
	ni = *n;
    } else {
	mi = *m;
    }

    i__1 = i2;
    i__2 = i3;
    for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
	if (left) {

/*           H(i) or H(i)' is applied to C(1:m-k+i,1:n) */

	    mi = *m - *k + i__;
	} else {

/*           H(i) or H(i)' is applied to C(1:m,1:n-k+i) */

	    ni = *n - *k + i__;
	}

/*        Apply H(i) or H(i)' */

	if (notran) {
	    i__3 = i__;
	    taui.r = tau[i__3].r, taui.i = tau[i__3].i;
	} else {
	    d_cnjg(&z__1, &tau[i__]);
	    taui.r = z__1.r, taui.i = z__1.i;
	}
	i__3 = nq - *k + i__ + i__ * a_dim1;
	aii.r = a[i__3].r, aii.i = a[i__3].i;
	i__3 = nq - *k + i__ + i__ * a_dim1;
	a[i__3].r = 1., a[i__3].i = 0.;
	zlarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &taui, &c__[
		c_offset], ldc, &work[1]);
	i__3 = nq - *k + i__ + i__ * a_dim1;
	a[i__3].r = aii.r, a[i__3].i = aii.i;
/* L10: */
    }
    return 0;

/*     End of ZUNM2L */

} /* zunm2l_ */