1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/* zungr2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zungr2_(integer *m, integer *n, integer *k,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublecomplex z__1, z__2;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, ii;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *), zlarf_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZUNGR2 generates an m by n complex matrix Q with orthonormal rows, */
/* which is defined as the last m rows of a product of k elementary */
/* reflectors of order n */
/* Q = H(1)' H(2)' . . . H(k)' */
/* as returned by ZGERQF. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix Q. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix Q. N >= M. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines the */
/* matrix Q. M >= K >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the (m-k+i)-th row must contain the vector which */
/* defines the elementary reflector H(i), for i = 1,2,...,k, as */
/* returned by ZGERQF in the last k rows of its array argument */
/* A. */
/* On exit, the m-by-n matrix Q. */
/* LDA (input) INTEGER */
/* The first dimension of the array A. LDA >= max(1,M). */
/* TAU (input) COMPLEX*16 array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by ZGERQF. */
/* WORK (workspace) COMPLEX*16 array, dimension (M) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument has an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*k < 0 || *k > *m) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZUNGR2", &i__1);
return 0;
}
/* Quick return if possible */
if (*m <= 0) {
return 0;
}
if (*k < *m) {
/* Initialise rows 1:m-k to rows of the unit matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m - *k;
for (l = 1; l <= i__2; ++l) {
i__3 = l + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/* L10: */
}
if (j > *n - *m && j <= *n - *k) {
i__2 = *m - *n + j + j * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
}
/* L20: */
}
}
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
ii = *m - *k + i__;
/* Apply H(i)' to A(1:m-k+i,1:n-k+i) from the right */
i__2 = *n - *m + ii - 1;
zlacgv_(&i__2, &a[ii + a_dim1], lda);
i__2 = ii + (*n - *m + ii) * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
i__2 = ii - 1;
i__3 = *n - *m + ii;
d_cnjg(&z__1, &tau[i__]);
zlarf_("Right", &i__2, &i__3, &a[ii + a_dim1], lda, &z__1, &a[
a_offset], lda, &work[1]);
i__2 = *n - *m + ii - 1;
i__3 = i__;
z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
zscal_(&i__2, &z__1, &a[ii + a_dim1], lda);
i__2 = *n - *m + ii - 1;
zlacgv_(&i__2, &a[ii + a_dim1], lda);
i__2 = ii + (*n - *m + ii) * a_dim1;
d_cnjg(&z__2, &tau[i__]);
z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i;
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* Set A(m-k+i,n-k+i+1:n) to zero */
i__2 = *n;
for (l = *n - *m + ii + 1; l <= i__2; ++l) {
i__3 = ii + l * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/* L30: */
}
/* L40: */
}
return 0;
/* End of ZUNGR2 */
} /* zungr2_ */
|