1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/* ztrtrs.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b2 = {1.,0.};
/* Subroutine */ int ztrtrs_(char *uplo, char *trans, char *diag, integer *n,
integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *b,
integer *ldb, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *),
xerbla_(char *, integer *);
logical nounit;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZTRTRS solves a triangular system of the form */
/* A * X = B, A**T * X = B, or A**H * X = B, */
/* where A is a triangular matrix of order N, and B is an N-by-NRHS */
/* matrix. A check is made to verify that A is nonsingular. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': A is upper triangular; */
/* = 'L': A is lower triangular. */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form of the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate transpose) */
/* DIAG (input) CHARACTER*1 */
/* = 'N': A is non-unit triangular; */
/* = 'U': A is unit triangular. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The triangular matrix A. If UPLO = 'U', the leading N-by-N */
/* upper triangular part of the array A contains the upper */
/* triangular matrix, and the strictly lower triangular part of */
/* A is not referenced. If UPLO = 'L', the leading N-by-N lower */
/* triangular part of the array A contains the lower triangular */
/* matrix, and the strictly upper triangular part of A is not */
/* referenced. If DIAG = 'U', the diagonal elements of A are */
/* also not referenced and are assumed to be 1. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/* On entry, the right hand side matrix B. */
/* On exit, if INFO = 0, the solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the i-th diagonal element of A is zero, */
/* indicating that the matrix is singular and the solutions */
/* X have not been computed. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
nounit = lsame_(diag, "N");
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (! lsame_(trans, "N") && ! lsame_(trans,
"T") && ! lsame_(trans, "C")) {
*info = -2;
} else if (! nounit && ! lsame_(diag, "U")) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*nrhs < 0) {
*info = -5;
} else if (*lda < max(1,*n)) {
*info = -7;
} else if (*ldb < max(1,*n)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZTRTRS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Check for singularity. */
if (nounit) {
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
i__2 = *info + *info * a_dim1;
if (a[i__2].r == 0. && a[i__2].i == 0.) {
return 0;
}
/* L10: */
}
}
*info = 0;
/* Solve A * x = b, A**T * x = b, or A**H * x = b. */
ztrsm_("Left", uplo, trans, diag, n, nrhs, &c_b2, &a[a_offset], lda, &b[
b_offset], ldb);
return 0;
/* End of ZTRTRS */
} /* ztrtrs_ */
|