aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztrexc.c
blob: 730babeea0fa3e830d2aa6625d03326cd81a67fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* ztrexc.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int ztrexc_(char *compq, integer *n, doublecomplex *t, 
	integer *ldt, doublecomplex *q, integer *ldq, integer *ifst, integer *
	ilst, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2, i__3;
    doublecomplex z__1;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer k, m1, m2, m3;
    doublereal cs;
    doublecomplex t11, t22, sn, temp;
    extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *);
    extern logical lsame_(char *, char *);
    logical wantq;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlartg_(
	    doublecomplex *, doublecomplex *, doublereal *, doublecomplex *, 
	    doublecomplex *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZTREXC reorders the Schur factorization of a complex matrix */
/*  A = Q*T*Q**H, so that the diagonal element of T with row index IFST */
/*  is moved to row ILST. */

/*  The Schur form T is reordered by a unitary similarity transformation */
/*  Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by */
/*  postmultplying it with Z. */

/*  Arguments */
/*  ========= */

/*  COMPQ   (input) CHARACTER*1 */
/*          = 'V':  update the matrix Q of Schur vectors; */
/*          = 'N':  do not update Q. */

/*  N       (input) INTEGER */
/*          The order of the matrix T. N >= 0. */

/*  T       (input/output) COMPLEX*16 array, dimension (LDT,N) */
/*          On entry, the upper triangular matrix T. */
/*          On exit, the reordered upper triangular matrix. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= max(1,N). */

/*  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N) */
/*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
/*          On exit, if COMPQ = 'V', Q has been postmultiplied by the */
/*          unitary transformation matrix Z which reorders T. */
/*          If COMPQ = 'N', Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  IFST    (input) INTEGER */
/*  ILST    (input) INTEGER */
/*          Specify the reordering of the diagonal elements of T: */
/*          The element with row index IFST is moved to row ILST by a */
/*          sequence of transpositions between adjacent elements. */
/*          1 <= IFST <= N; 1 <= ILST <= N. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters. */

    /* Parameter adjustments */
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;

    /* Function Body */
    *info = 0;
    wantq = lsame_(compq, "V");
    if (! lsame_(compq, "N") && ! wantq) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldt < max(1,*n)) {
	*info = -4;
    } else if (*ldq < 1 || wantq && *ldq < max(1,*n)) {
	*info = -6;
    } else if (*ifst < 1 || *ifst > *n) {
	*info = -7;
    } else if (*ilst < 1 || *ilst > *n) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTREXC", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 1 || *ifst == *ilst) {
	return 0;
    }

    if (*ifst < *ilst) {

/*        Move the IFST-th diagonal element forward down the diagonal. */

	m1 = 0;
	m2 = -1;
	m3 = 1;
    } else {

/*        Move the IFST-th diagonal element backward up the diagonal. */

	m1 = -1;
	m2 = 0;
	m3 = -1;
    }

    i__1 = *ilst + m2;
    i__2 = m3;
    for (k = *ifst + m1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {

/*        Interchange the k-th and (k+1)-th diagonal elements. */

	i__3 = k + k * t_dim1;
	t11.r = t[i__3].r, t11.i = t[i__3].i;
	i__3 = k + 1 + (k + 1) * t_dim1;
	t22.r = t[i__3].r, t22.i = t[i__3].i;

/*        Determine the transformation to perform the interchange. */

	z__1.r = t22.r - t11.r, z__1.i = t22.i - t11.i;
	zlartg_(&t[k + (k + 1) * t_dim1], &z__1, &cs, &sn, &temp);

/*        Apply transformation to the matrix T. */

	if (k + 2 <= *n) {
	    i__3 = *n - k - 1;
	    zrot_(&i__3, &t[k + (k + 2) * t_dim1], ldt, &t[k + 1 + (k + 2) * 
		    t_dim1], ldt, &cs, &sn);
	}
	i__3 = k - 1;
	d_cnjg(&z__1, &sn);
	zrot_(&i__3, &t[k * t_dim1 + 1], &c__1, &t[(k + 1) * t_dim1 + 1], &
		c__1, &cs, &z__1);

	i__3 = k + k * t_dim1;
	t[i__3].r = t22.r, t[i__3].i = t22.i;
	i__3 = k + 1 + (k + 1) * t_dim1;
	t[i__3].r = t11.r, t[i__3].i = t11.i;

	if (wantq) {

/*           Accumulate transformation in the matrix Q. */

	    d_cnjg(&z__1, &sn);
	    zrot_(n, &q[k * q_dim1 + 1], &c__1, &q[(k + 1) * q_dim1 + 1], &
		    c__1, &cs, &z__1);
	}

/* L10: */
    }

    return 0;

/*     End of ZTREXC */

} /* ztrexc_ */