aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zrot.c
blob: 4e716e6c7ef6ff08034b2bbc0790a4e829fa528e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/* zrot.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int zrot_(integer *n, doublecomplex *cx, integer *incx, 
	doublecomplex *cy, integer *incy, doublereal *c__, doublecomplex *s)
{
    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublecomplex z__1, z__2, z__3, z__4;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, ix, iy;
    doublecomplex stemp;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZROT   applies a plane rotation, where the cos (C) is real and the */
/*  sin (S) is complex, and the vectors CX and CY are complex. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of elements in the vectors CX and CY. */

/*  CX      (input/output) COMPLEX*16 array, dimension (N) */
/*          On input, the vector X. */
/*          On output, CX is overwritten with C*X + S*Y. */

/*  INCX    (input) INTEGER */
/*          The increment between successive values of CY.  INCX <> 0. */

/*  CY      (input/output) COMPLEX*16 array, dimension (N) */
/*          On input, the vector Y. */
/*          On output, CY is overwritten with -CONJG(S)*X + C*Y. */

/*  INCY    (input) INTEGER */
/*          The increment between successive values of CY.  INCX <> 0. */

/*  C       (input) DOUBLE PRECISION */
/*  S       (input) COMPLEX*16 */
/*          C and S define a rotation */
/*             [  C          S  ] */
/*             [ -conjg(S)   C  ] */
/*          where C*C + S*CONJG(S) = 1.0. */

/* ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --cy;
    --cx;

    /* Function Body */
    if (*n <= 0) {
	return 0;
    }
    if (*incx == 1 && *incy == 1) {
	goto L20;
    }

/*     Code for unequal increments or equal increments not equal to 1 */

    ix = 1;
    iy = 1;
    if (*incx < 0) {
	ix = (-(*n) + 1) * *incx + 1;
    }
    if (*incy < 0) {
	iy = (-(*n) + 1) * *incy + 1;
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = ix;
	z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
	i__3 = iy;
	z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
		i__3].i + s->i * cy[i__3].r;
	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
	stemp.r = z__1.r, stemp.i = z__1.i;
	i__2 = iy;
	i__3 = iy;
	z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
	d_cnjg(&z__4, s);
	i__4 = ix;
	z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r * 
		cx[i__4].i + z__4.i * cx[i__4].r;
	z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
	cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
	i__2 = ix;
	cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
	ix += *incx;
	iy += *incy;
/* L10: */
    }
    return 0;

/*     Code for both increments equal to 1 */

L20:
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__;
	z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
	i__3 = i__;
	z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
		i__3].i + s->i * cy[i__3].r;
	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
	stemp.r = z__1.r, stemp.i = z__1.i;
	i__2 = i__;
	i__3 = i__;
	z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
	d_cnjg(&z__4, s);
	i__4 = i__;
	z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r * 
		cx[i__4].i + z__4.i * cx[i__4].r;
	z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
	cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
	i__2 = i__;
	cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
/* L30: */
    }
    return 0;
} /* zrot_ */