aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpttrs.c
blob: ebca07e9551fcada1462b309afe267f0e0fa0f0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* zpttrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int zpttrs_(char *uplo, integer *n, integer *nrhs, 
	doublereal *d__, doublecomplex *e, doublecomplex *b, integer *ldb, 
	integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer j, jb, nb, iuplo;
    logical upper;
    extern /* Subroutine */ int zptts2_(integer *, integer *, integer *, 
	    doublereal *, doublecomplex *, doublecomplex *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPTTRS solves a tridiagonal system of the form */
/*     A * X = B */
/*  using the factorization A = U'*D*U or A = L*D*L' computed by ZPTTRF. */
/*  D is a diagonal matrix specified in the vector D, U (or L) is a unit */
/*  bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */
/*  the vector E, and X and B are N by NRHS matrices. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies the form of the factorization and whether the */
/*          vector E is the superdiagonal of the upper bidiagonal factor */
/*          U or the subdiagonal of the lower bidiagonal factor L. */
/*          = 'U':  A = U'*D*U, E is the superdiagonal of U */
/*          = 'L':  A = L*D*L', E is the subdiagonal of L */

/*  N       (input) INTEGER */
/*          The order of the tridiagonal matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the diagonal matrix D from the */
/*          factorization A = U'*D*U or A = L*D*L'. */

/*  E       (input) COMPLEX*16 array, dimension (N-1) */
/*          If UPLO = 'U', the (n-1) superdiagonal elements of the unit */
/*          bidiagonal factor U from the factorization A = U'*D*U. */
/*          If UPLO = 'L', the (n-1) subdiagonal elements of the unit */
/*          bidiagonal factor L from the factorization A = L*D*L'. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the right hand side vectors B for the system of */
/*          linear equations. */
/*          On exit, the solution vectors, X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    --d__;
    --e;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = *(unsigned char *)uplo == 'U' || *(unsigned char *)uplo == 'u';
    if (! upper && ! (*(unsigned char *)uplo == 'L' || *(unsigned char *)uplo 
	    == 'l')) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPTTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

/*     Determine the number of right-hand sides to solve at a time. */

    if (*nrhs == 1) {
	nb = 1;
    } else {
/* Computing MAX */
	i__1 = 1, i__2 = ilaenv_(&c__1, "ZPTTRS", uplo, n, nrhs, &c_n1, &c_n1);
	nb = max(i__1,i__2);
    }

/*     Decode UPLO */

    if (upper) {
	iuplo = 1;
    } else {
	iuplo = 0;
    }

    if (nb >= *nrhs) {
	zptts2_(&iuplo, n, nrhs, &d__[1], &e[1], &b[b_offset], ldb);
    } else {
	i__1 = *nrhs;
	i__2 = nb;
	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = *nrhs - j + 1;
	    jb = min(i__3,nb);
	    zptts2_(&iuplo, n, &jb, &d__[1], &e[1], &b[j * b_dim1 + 1], ldb);
/* L10: */
	}
    }

    return 0;

/*     End of ZPTTRS */

} /* zpttrs_ */