1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/* zptsv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zptsv_(integer *n, integer *nrhs, doublereal *d__,
doublecomplex *e, doublecomplex *b, integer *ldb, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, i__1;
/* Local variables */
extern /* Subroutine */ int xerbla_(char *, integer *), zpttrf_(
integer *, doublereal *, doublecomplex *, integer *), zpttrs_(
char *, integer *, integer *, doublereal *, doublecomplex *,
doublecomplex *, integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZPTSV computes the solution to a complex system of linear equations */
/* A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal */
/* matrix, and X and B are N-by-NRHS matrices. */
/* A is factored as A = L*D*L**H, and the factored form of A is then */
/* used to solve the system of equations. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix */
/* A. On exit, the n diagonal elements of the diagonal matrix */
/* D from the factorization A = L*D*L**H. */
/* E (input/output) COMPLEX*16 array, dimension (N-1) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix A. On exit, the (n-1) subdiagonal elements of the */
/* unit bidiagonal factor L from the L*D*L**H factorization of */
/* A. E can also be regarded as the superdiagonal of the unit */
/* bidiagonal factor U from the U**H*D*U factorization of A. */
/* B (input/output) COMPLEX*16 array, dimension (LDB,N) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the leading minor of order i is not */
/* positive definite, and the solution has not been */
/* computed. The factorization has not been completed */
/* unless i = N. */
/* ===================================================================== */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*nrhs < 0) {
*info = -2;
} else if (*ldb < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPTSV ", &i__1);
return 0;
}
/* Compute the L*D*L' (or U'*D*U) factorization of A. */
zpttrf_(n, &d__[1], &e[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
zpttrs_("Lower", n, nrhs, &d__[1], &e[1], &b[b_offset], ldb, info);
}
return 0;
/* End of ZPTSV */
} /* zptsv_ */
|