1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
/* zpteqr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__0 = 0;
static integer c__1 = 1;
/* Subroutine */ int zpteqr_(char *compz, integer *n, doublereal *d__,
doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work,
integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublecomplex c__[1] /* was [1][1] */;
integer i__;
doublecomplex vt[1] /* was [1][1] */;
integer nru;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
integer icompz;
extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *), dpttrf_(integer *, doublereal *, doublereal *, integer *)
, zbdsqr_(char *, integer *, integer *, integer *, integer *,
doublereal *, doublereal *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublereal *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a */
/* symmetric positive definite tridiagonal matrix by first factoring the */
/* matrix using DPTTRF and then calling ZBDSQR to compute the singular */
/* values of the bidiagonal factor. */
/* This routine computes the eigenvalues of the positive definite */
/* tridiagonal matrix to high relative accuracy. This means that if the */
/* eigenvalues range over many orders of magnitude in size, then the */
/* small eigenvalues and corresponding eigenvectors will be computed */
/* more accurately than, for example, with the standard QR method. */
/* The eigenvectors of a full or band positive definite Hermitian matrix */
/* can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to */
/* reduce this matrix to tridiagonal form. (The reduction to */
/* tridiagonal form, however, may preclude the possibility of obtaining */
/* high relative accuracy in the small eigenvalues of the original */
/* matrix, if these eigenvalues range over many orders of magnitude.) */
/* Arguments */
/* ========= */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only. */
/* = 'V': Compute eigenvectors of original Hermitian */
/* matrix also. Array Z contains the unitary matrix */
/* used to reduce the original matrix to tridiagonal */
/* form. */
/* = 'I': Compute eigenvectors of tridiagonal matrix also. */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix. */
/* On normal exit, D contains the eigenvalues, in descending */
/* order. */
/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix. */
/* On exit, E has been destroyed. */
/* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */
/* On entry, if COMPZ = 'V', the unitary matrix used in the */
/* reduction to tridiagonal form. */
/* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */
/* original Hermitian matrix; */
/* if COMPZ = 'I', the orthonormal eigenvectors of the */
/* tridiagonal matrix. */
/* If INFO > 0 on exit, Z contains the eigenvectors associated */
/* with only the stored eigenvalues. */
/* If COMPZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* COMPZ = 'V' or 'I', LDZ >= max(1,N). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, and i is: */
/* <= N the Cholesky factorization of the matrix could */
/* not be performed because the i-th principal minor */
/* was not positive definite. */
/* > N the SVD algorithm failed to converge; */
/* if INFO = N+i, i off-diagonal elements of the */
/* bidiagonal factor did not converge to zero. */
/* ==================================================================== */
/* .. Parameters .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPTEQR", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz > 0) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1., z__[i__1].i = 0.;
}
return 0;
}
if (icompz == 2) {
zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
}
/* Call DPTTRF to factor the matrix. */
dpttrf_(n, &d__[1], &e[1], info);
if (*info != 0) {
return 0;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = sqrt(d__[i__]);
/* L10: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
e[i__] *= d__[i__];
/* L20: */
}
/* Call ZBDSQR to compute the singular values/vectors of the */
/* bidiagonal factor. */
if (icompz > 0) {
nru = *n;
} else {
nru = 0;
}
zbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[
z_offset], ldz, c__, &c__1, &work[1], info);
/* Square the singular values. */
if (*info == 0) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] *= d__[i__];
/* L30: */
}
} else {
*info = *n + *info;
}
return 0;
/* End of ZPTEQR */
} /* zpteqr_ */
|