aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpbtf2.c
blob: de9734cb925e1f105b7982ae75d997764cd6a3ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/* zpbtf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublereal c_b8 = -1.;
static integer c__1 = 1;

/* Subroutine */ int zpbtf2_(char *uplo, integer *n, integer *kd, 
	doublecomplex *ab, integer *ldab, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer j, kn;
    doublereal ajj;
    integer kld;
    extern /* Subroutine */ int zher_(char *, integer *, doublereal *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern logical lsame_(char *, char *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
	    integer *, doublereal *, doublecomplex *, integer *), zlacgv_(
	    integer *, doublecomplex *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPBTF2 computes the Cholesky factorization of a complex Hermitian */
/*  positive definite band matrix A. */

/*  The factorization has the form */
/*     A = U' * U ,  if UPLO = 'U', or */
/*     A = L  * L',  if UPLO = 'L', */
/*  where U is an upper triangular matrix, U' is the conjugate transpose */
/*  of U, and L is lower triangular. */

/*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          Hermitian matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of super-diagonals of the matrix A if UPLO = 'U', */
/*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, if INFO = 0, the triangular factor U or L from the */
/*          Cholesky factorization A = U'*U or A = L*L' of the band */
/*          matrix A, in the same storage format as A. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
/*          > 0: if INFO = k, the leading minor of order k is not */
/*               positive definite, and the factorization could not be */
/*               completed. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  On entry:                       On exit: */

/*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*  On entry:                       On exit: */

/*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
/*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
/*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBTF2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/* Computing MAX */
    i__1 = 1, i__2 = *ldab - 1;
    kld = max(i__1,i__2);

    if (upper) {

/*        Compute the Cholesky factorization A = U'*U. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*           Compute U(J,J) and test for non-positive-definiteness. */

	    i__2 = *kd + 1 + j * ab_dim1;
	    ajj = ab[i__2].r;
	    if (ajj <= 0.) {
		i__2 = *kd + 1 + j * ab_dim1;
		ab[i__2].r = ajj, ab[i__2].i = 0.;
		goto L30;
	    }
	    ajj = sqrt(ajj);
	    i__2 = *kd + 1 + j * ab_dim1;
	    ab[i__2].r = ajj, ab[i__2].i = 0.;

/*           Compute elements J+1:J+KN of row J and update the */
/*           trailing submatrix within the band. */

/* Computing MIN */
	    i__2 = *kd, i__3 = *n - j;
	    kn = min(i__2,i__3);
	    if (kn > 0) {
		d__1 = 1. / ajj;
		zdscal_(&kn, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
		zlacgv_(&kn, &ab[*kd + (j + 1) * ab_dim1], &kld);
		zher_("Upper", &kn, &c_b8, &ab[*kd + (j + 1) * ab_dim1], &kld, 
			 &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
		zlacgv_(&kn, &ab[*kd + (j + 1) * ab_dim1], &kld);
	    }
/* L10: */
	}
    } else {

/*        Compute the Cholesky factorization A = L*L'. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*           Compute L(J,J) and test for non-positive-definiteness. */

	    i__2 = j * ab_dim1 + 1;
	    ajj = ab[i__2].r;
	    if (ajj <= 0.) {
		i__2 = j * ab_dim1 + 1;
		ab[i__2].r = ajj, ab[i__2].i = 0.;
		goto L30;
	    }
	    ajj = sqrt(ajj);
	    i__2 = j * ab_dim1 + 1;
	    ab[i__2].r = ajj, ab[i__2].i = 0.;

/*           Compute elements J+1:J+KN of column J and update the */
/*           trailing submatrix within the band. */

/* Computing MIN */
	    i__2 = *kd, i__3 = *n - j;
	    kn = min(i__2,i__3);
	    if (kn > 0) {
		d__1 = 1. / ajj;
		zdscal_(&kn, &d__1, &ab[j * ab_dim1 + 2], &c__1);
		zher_("Lower", &kn, &c_b8, &ab[j * ab_dim1 + 2], &c__1, &ab[(
			j + 1) * ab_dim1 + 1], &kld);
	    }
/* L20: */
	}
    }
    return 0;

L30:
    *info = j;
    return 0;

/*     End of ZPBTF2 */

} /* zpbtf2_ */