1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* zlargv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zlargv_(integer *n, doublecomplex *x, integer *incx,
doublecomplex *y, integer *incy, doublereal *c__, integer *incc)
{
/* System generated locals */
integer i__1, i__2;
doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), d_imag(
doublecomplex *), sqrt(doublereal);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
doublereal d__;
doublecomplex f, g;
integer i__, j;
doublecomplex r__;
doublereal f2, g2;
integer ic;
doublereal di;
doublecomplex ff;
doublereal cs, dr;
doublecomplex fs, gs;
integer ix, iy;
doublecomplex sn;
doublereal f2s, g2s, eps, scale;
integer count;
doublereal safmn2;
extern doublereal dlapy2_(doublereal *, doublereal *);
doublereal safmx2;
extern doublereal dlamch_(char *);
doublereal safmin;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZLARGV generates a vector of complex plane rotations with real */
/* cosines, determined by elements of the complex vectors x and y. */
/* For i = 1,2,...,n */
/* ( c(i) s(i) ) ( x(i) ) = ( r(i) ) */
/* ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) */
/* where c(i)**2 + ABS(s(i))**2 = 1 */
/* The following conventions are used (these are the same as in ZLARTG, */
/* but differ from the BLAS1 routine ZROTG): */
/* If y(i)=0, then c(i)=1 and s(i)=0. */
/* If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of plane rotations to be generated. */
/* X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/* On entry, the vector x. */
/* On exit, x(i) is overwritten by r(i), for i = 1,...,n. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) */
/* On entry, the vector y. */
/* On exit, the sines of the plane rotations. */
/* INCY (input) INTEGER */
/* The increment between elements of Y. INCY > 0. */
/* C (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) */
/* The cosines of the plane rotations. */
/* INCC (input) INTEGER */
/* The increment between elements of C. INCC > 0. */
/* Further Details */
/* ======= ======= */
/* 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
/* This version has a few statements commented out for thread safety */
/* (machine parameters are computed on each entry). 10 feb 03, SJH. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* LOGICAL FIRST */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Save statement .. */
/* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 */
/* .. */
/* .. Data statements .. */
/* DATA FIRST / .TRUE. / */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
/* IF( FIRST ) THEN */
/* FIRST = .FALSE. */
/* Parameter adjustments */
--c__;
--y;
--x;
/* Function Body */
safmin = dlamch_("S");
eps = dlamch_("E");
d__1 = dlamch_("B");
i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) / 2.);
safmn2 = pow_di(&d__1, &i__1);
safmx2 = 1. / safmn2;
/* END IF */
ix = 1;
iy = 1;
ic = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ix;
f.r = x[i__2].r, f.i = x[i__2].i;
i__2 = iy;
g.r = y[i__2].r, g.i = y[i__2].i;
/* Use identical algorithm as in ZLARTG */
/* Computing MAX */
/* Computing MAX */
d__7 = (d__1 = f.r, abs(d__1)), d__8 = (d__2 = d_imag(&f), abs(d__2));
/* Computing MAX */
d__9 = (d__3 = g.r, abs(d__3)), d__10 = (d__4 = d_imag(&g), abs(d__4))
;
d__5 = max(d__7,d__8), d__6 = max(d__9,d__10);
scale = max(d__5,d__6);
fs.r = f.r, fs.i = f.i;
gs.r = g.r, gs.i = g.i;
count = 0;
if (scale >= safmx2) {
L10:
++count;
z__1.r = safmn2 * fs.r, z__1.i = safmn2 * fs.i;
fs.r = z__1.r, fs.i = z__1.i;
z__1.r = safmn2 * gs.r, z__1.i = safmn2 * gs.i;
gs.r = z__1.r, gs.i = z__1.i;
scale *= safmn2;
if (scale >= safmx2) {
goto L10;
}
} else if (scale <= safmn2) {
if (g.r == 0. && g.i == 0.) {
cs = 1.;
sn.r = 0., sn.i = 0.;
r__.r = f.r, r__.i = f.i;
goto L50;
}
L20:
--count;
z__1.r = safmx2 * fs.r, z__1.i = safmx2 * fs.i;
fs.r = z__1.r, fs.i = z__1.i;
z__1.r = safmx2 * gs.r, z__1.i = safmx2 * gs.i;
gs.r = z__1.r, gs.i = z__1.i;
scale *= safmx2;
if (scale <= safmn2) {
goto L20;
}
}
/* Computing 2nd power */
d__1 = fs.r;
/* Computing 2nd power */
d__2 = d_imag(&fs);
f2 = d__1 * d__1 + d__2 * d__2;
/* Computing 2nd power */
d__1 = gs.r;
/* Computing 2nd power */
d__2 = d_imag(&gs);
g2 = d__1 * d__1 + d__2 * d__2;
if (f2 <= max(g2,1.) * safmin) {
/* This is a rare case: F is very small. */
if (f.r == 0. && f.i == 0.) {
cs = 0.;
d__2 = g.r;
d__3 = d_imag(&g);
d__1 = dlapy2_(&d__2, &d__3);
r__.r = d__1, r__.i = 0.;
/* Do complex/real division explicitly with two real */
/* divisions */
d__1 = gs.r;
d__2 = d_imag(&gs);
d__ = dlapy2_(&d__1, &d__2);
d__1 = gs.r / d__;
d__2 = -d_imag(&gs) / d__;
z__1.r = d__1, z__1.i = d__2;
sn.r = z__1.r, sn.i = z__1.i;
goto L50;
}
d__1 = fs.r;
d__2 = d_imag(&fs);
f2s = dlapy2_(&d__1, &d__2);
/* G2 and G2S are accurate */
/* G2 is at least SAFMIN, and G2S is at least SAFMN2 */
g2s = sqrt(g2);
/* Error in CS from underflow in F2S is at most */
/* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
/* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
/* and so CS .lt. sqrt(SAFMIN) */
/* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
/* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
/* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
cs = f2s / g2s;
/* Make sure abs(FF) = 1 */
/* Do complex/real division explicitly with 2 real divisions */
/* Computing MAX */
d__3 = (d__1 = f.r, abs(d__1)), d__4 = (d__2 = d_imag(&f), abs(
d__2));
if (max(d__3,d__4) > 1.) {
d__1 = f.r;
d__2 = d_imag(&f);
d__ = dlapy2_(&d__1, &d__2);
d__1 = f.r / d__;
d__2 = d_imag(&f) / d__;
z__1.r = d__1, z__1.i = d__2;
ff.r = z__1.r, ff.i = z__1.i;
} else {
dr = safmx2 * f.r;
di = safmx2 * d_imag(&f);
d__ = dlapy2_(&dr, &di);
d__1 = dr / d__;
d__2 = di / d__;
z__1.r = d__1, z__1.i = d__2;
ff.r = z__1.r, ff.i = z__1.i;
}
d__1 = gs.r / g2s;
d__2 = -d_imag(&gs) / g2s;
z__2.r = d__1, z__2.i = d__2;
z__1.r = ff.r * z__2.r - ff.i * z__2.i, z__1.i = ff.r * z__2.i +
ff.i * z__2.r;
sn.r = z__1.r, sn.i = z__1.i;
z__2.r = cs * f.r, z__2.i = cs * f.i;
z__3.r = sn.r * g.r - sn.i * g.i, z__3.i = sn.r * g.i + sn.i *
g.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
r__.r = z__1.r, r__.i = z__1.i;
} else {
/* This is the most common case. */
/* Neither F2 nor F2/G2 are less than SAFMIN */
/* F2S cannot overflow, and it is accurate */
f2s = sqrt(g2 / f2 + 1.);
/* Do the F2S(real)*FS(complex) multiply with two real */
/* multiplies */
d__1 = f2s * fs.r;
d__2 = f2s * d_imag(&fs);
z__1.r = d__1, z__1.i = d__2;
r__.r = z__1.r, r__.i = z__1.i;
cs = 1. / f2s;
d__ = f2 + g2;
/* Do complex/real division explicitly with two real divisions */
d__1 = r__.r / d__;
d__2 = d_imag(&r__) / d__;
z__1.r = d__1, z__1.i = d__2;
sn.r = z__1.r, sn.i = z__1.i;
d_cnjg(&z__2, &gs);
z__1.r = sn.r * z__2.r - sn.i * z__2.i, z__1.i = sn.r * z__2.i +
sn.i * z__2.r;
sn.r = z__1.r, sn.i = z__1.i;
if (count != 0) {
if (count > 0) {
i__2 = count;
for (j = 1; j <= i__2; ++j) {
z__1.r = safmx2 * r__.r, z__1.i = safmx2 * r__.i;
r__.r = z__1.r, r__.i = z__1.i;
/* L30: */
}
} else {
i__2 = -count;
for (j = 1; j <= i__2; ++j) {
z__1.r = safmn2 * r__.r, z__1.i = safmn2 * r__.i;
r__.r = z__1.r, r__.i = z__1.i;
/* L40: */
}
}
}
}
L50:
c__[ic] = cs;
i__2 = iy;
y[i__2].r = sn.r, y[i__2].i = sn.i;
i__2 = ix;
x[i__2].r = r__.r, x[i__2].i = r__.i;
ic += *incc;
iy += *incy;
ix += *incx;
/* L60: */
}
return 0;
/* End of ZLARGV */
} /* zlargv_ */
|