1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/* zlarfp.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b5 = {1.,0.};
/* Subroutine */ int zlarfp_(integer *n, doublecomplex *alpha, doublecomplex *
x, integer *incx, doublecomplex *tau)
{
/* System generated locals */
integer i__1, i__2;
doublereal d__1, d__2;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *);
/* Local variables */
integer j, knt;
doublereal beta, alphi, alphr;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublereal xnorm;
extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal
*, doublereal *, doublereal *), dznrm2_(integer *, doublecomplex *
, integer *), dlamch_(char *);
doublereal safmin;
extern /* Subroutine */ int zdscal_(integer *, doublereal *,
doublecomplex *, integer *);
doublereal rsafmn;
extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
doublecomplex *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZLARFP generates a complex elementary reflector H of order n, such */
/* that */
/* H' * ( alpha ) = ( beta ), H' * H = I. */
/* ( x ) ( 0 ) */
/* where alpha and beta are scalars, beta is real and non-negative, and */
/* x is an (n-1)-element complex vector. H is represented in the form */
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
/* ( v ) */
/* where tau is a complex scalar and v is a complex (n-1)-element */
/* vector. Note that H is not hermitian. */
/* If the elements of x are all zero and alpha is real, then tau = 0 */
/* and H is taken to be the unit matrix. */
/* Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the elementary reflector. */
/* ALPHA (input/output) COMPLEX*16 */
/* On entry, the value alpha. */
/* On exit, it is overwritten with the value beta. */
/* X (input/output) COMPLEX*16 array, dimension */
/* (1+(N-2)*abs(INCX)) */
/* On entry, the vector x. */
/* On exit, it is overwritten with the vector v. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* TAU (output) COMPLEX*16 */
/* The value tau. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 0) {
tau->r = 0., tau->i = 0.;
return 0;
}
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
alphr = alpha->r;
alphi = d_imag(alpha);
if (xnorm == 0. && alphi == 0.) {
/* H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0. */
if (alphi == 0.) {
if (alphr >= 0.) {
/* When TAU.eq.ZERO, the vector is special-cased to be */
/* all zeros in the application routines. We do not need */
/* to clear it. */
tau->r = 0., tau->i = 0.;
} else {
/* However, the application routines rely on explicit */
/* zero checks when TAU.ne.ZERO, and we must clear X. */
tau->r = 2., tau->i = 0.;
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = (j - 1) * *incx + 1;
x[i__2].r = 0., x[i__2].i = 0.;
}
z__1.r = -alpha->r, z__1.i = -alpha->i;
alpha->r = z__1.r, alpha->i = z__1.i;
}
} else {
/* Only "reflecting" the diagonal entry to be real and non-negative. */
xnorm = dlapy2_(&alphr, &alphi);
d__1 = 1. - alphr / xnorm;
d__2 = -alphi / xnorm;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = (j - 1) * *incx + 1;
x[i__2].r = 0., x[i__2].i = 0.;
}
alpha->r = xnorm, alpha->i = 0.;
}
} else {
/* general case */
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = d_sign(&d__1, &alphr);
safmin = dlamch_("S") / dlamch_("E");
rsafmn = 1. / safmin;
knt = 0;
if (abs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
L10:
++knt;
i__1 = *n - 1;
zdscal_(&i__1, &rsafmn, &x[1], incx);
beta *= rsafmn;
alphi *= rsafmn;
alphr *= rsafmn;
if (abs(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
z__1.r = alphr, z__1.i = alphi;
alpha->r = z__1.r, alpha->i = z__1.i;
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = d_sign(&d__1, &alphr);
}
z__1.r = alpha->r + beta, z__1.i = alpha->i;
alpha->r = z__1.r, alpha->i = z__1.i;
if (beta < 0.) {
beta = -beta;
z__2.r = -alpha->r, z__2.i = -alpha->i;
z__1.r = z__2.r / beta, z__1.i = z__2.i / beta;
tau->r = z__1.r, tau->i = z__1.i;
} else {
alphr = alphi * (alphi / alpha->r);
alphr += xnorm * (xnorm / alpha->r);
d__1 = alphr / beta;
d__2 = -alphi / beta;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
d__1 = -alphr;
z__1.r = d__1, z__1.i = alphi;
alpha->r = z__1.r, alpha->i = z__1.i;
}
zladiv_(&z__1, &c_b5, alpha);
alpha->r = z__1.r, alpha->i = z__1.i;
i__1 = *n - 1;
zscal_(&i__1, alpha, &x[1], incx);
/* If BETA is subnormal, it may lose relative accuracy */
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
beta *= safmin;
/* L20: */
}
alpha->r = beta, alpha->i = 0.;
}
return 0;
/* End of ZLARFP */
} /* zlarfp_ */
|