aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zlapll.c
blob: 66a440585540ff522ed7e316880f8b9da092c125 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* zlapll.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int zlapll_(integer *n, doublecomplex *x, integer *incx, 
	doublecomplex *y, integer *incy, doublereal *ssmin)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2, d__3;
    doublecomplex z__1, z__2, z__3, z__4;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *);

    /* Local variables */
    doublecomplex c__, a11, a12, a22, tau;
    extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    doublereal ssmax;
    extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zlarfg_(
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Given two column vectors X and Y, let */

/*                       A = ( X Y ). */

/*  The subroutine first computes the QR factorization of A = Q*R, */
/*  and then computes the SVD of the 2-by-2 upper triangular matrix R. */
/*  The smaller singular value of R is returned in SSMIN, which is used */
/*  as the measurement of the linear dependency of the vectors X and Y. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The length of the vectors X and Y. */

/*  X       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/*          On entry, X contains the N-vector X. */
/*          On exit, X is overwritten. */

/*  INCX    (input) INTEGER */
/*          The increment between successive elements of X. INCX > 0. */

/*  Y       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) */
/*          On entry, Y contains the N-vector Y. */
/*          On exit, Y is overwritten. */

/*  INCY    (input) INTEGER */
/*          The increment between successive elements of Y. INCY > 0. */

/*  SSMIN   (output) DOUBLE PRECISION */
/*          The smallest singular value of the N-by-2 matrix A = ( X Y ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    if (*n <= 1) {
	*ssmin = 0.;
	return 0;
    }

/*     Compute the QR factorization of the N-by-2 matrix ( X Y ) */

    zlarfg_(n, &x[1], &x[*incx + 1], incx, &tau);
    a11.r = x[1].r, a11.i = x[1].i;
    x[1].r = 1., x[1].i = 0.;

    d_cnjg(&z__3, &tau);
    z__2.r = -z__3.r, z__2.i = -z__3.i;
    zdotc_(&z__4, n, &x[1], incx, &y[1], incy);
    z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + 
	    z__2.i * z__4.r;
    c__.r = z__1.r, c__.i = z__1.i;
    zaxpy_(n, &c__, &x[1], incx, &y[1], incy);

    i__1 = *n - 1;
    zlarfg_(&i__1, &y[*incy + 1], &y[(*incy << 1) + 1], incy, &tau);

    a12.r = y[1].r, a12.i = y[1].i;
    i__1 = *incy + 1;
    a22.r = y[i__1].r, a22.i = y[i__1].i;

/*     Compute the SVD of 2-by-2 Upper triangular matrix. */

    d__1 = z_abs(&a11);
    d__2 = z_abs(&a12);
    d__3 = z_abs(&a22);
    dlas2_(&d__1, &d__2, &d__3, ssmin, &ssmax);

    return 0;

/*     End of ZLAPLL */

} /* zlapll_ */