aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zlanht.c
blob: 6eac0134025c9103ea5b04ee462892254faf336e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* zlanht.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

doublereal zlanht_(char *norm, integer *n, doublereal *d__, doublecomplex *e)
{
    /* System generated locals */
    integer i__1;
    doublereal ret_val, d__1, d__2, d__3;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal sum, scale;
    extern logical lsame_(char *, char *);
    doublereal anorm;
    extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 
	    doublereal *, doublereal *), zlassq_(integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANHT  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  complex Hermitian tridiagonal matrix A. */

/*  Description */
/*  =========== */

/*  ZLANHT returns the value */

/*     ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHT as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is */
/*          set to zero. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The diagonal elements of A. */

/*  E       (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) sub-diagonal or super-diagonal elements of A. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
	anorm = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = (d__1 = d__[*n], abs(d__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
	    anorm = max(d__2,d__3);
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&e[i__]);
	    anorm = max(d__1,d__2);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1' || lsame_(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = abs(d__[1]);
	} else {
/* Computing MAX */
	    d__2 = abs(d__[1]) + z_abs(&e[1]), d__3 = z_abs(&e[*n - 1]) + (
		    d__1 = d__[*n], abs(d__1));
	    anorm = max(d__2,d__3);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)) + z_abs(&e[
			i__]) + z_abs(&e[i__ - 1]);
		anorm = max(d__2,d__3);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*n > 1) {
	    i__1 = *n - 1;
	    zlassq_(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	dlassq_(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of ZLANHT */

} /* zlanht_ */